Abstract
Aims
Soil pH critically influences microbial community diversity and structure, characterized by intricate network interactions among community members. However, the precise relationship between soil pH and microbial network complexity and stability remains inadequately explored.
Methods
We analyzed soil samples from 246 agricultural fields spanning 107,200 km2 in eastern China, employing a novel moving-window approach to examine key topological attributes of microbial networks across a pH gradient.
Results
Neutral pH (7.0) emerged as a critical threshold for microbial network dynamics. At this pH, networks exhibited maximal complexity, characterized by peak average degree, clustering coefficient, and density. These networks demonstrated superior stability, with enhanced robustness and network cohesion. Conversely, acidic and alkaline conditions corresponded to reduced network complexity and stability, revealing a non-linear pH-network relationship. Distinctive associate clusters at phylum level suggested pH-specific community assemblages.
Conclusion
Neutral soil pH optimizes microbial network complexity and stability. Our findings provide empirical insights into pH-mediated microbial community organization, offering fundamental implications for understanding soil microbial ecology and ecosystem management.
Similar content being viewed by others
Data availability
The raw sequences used in this study have been deposited in DNA Data Bank of Japan (DDBJ) under the accession number of DRA016436.
References
Banerjee S, Schlaeppi K, van der Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16(9):567–576
Barberán A, Bates ST, Casamayor EO, Fierer N (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 6(2):343–351
Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515(7528):505–511
Berdugo M, Maestre FT, Kéfi S, Gross N, Le Bagousse-Pinguet Y, Soliveres S, Gomez-Aparicio L (2018) Aridity preferences alter the relative importance of abiotic and biotic drivers on plant species abundance in global drylands. J Ecol 107(1):190–202
Berry, D., Widder, S., 2014. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 5.
Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH (2008) Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl Acad Sci USA 105(30):10583–10588
Blanchet FG, Cazelles K, Gravel D, Jeffers E (2020) Co-occurrence is not evidence of ecological interactions. Ecol Lett 23(7):1050–1063
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu Y-X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotech 37(8):852–857
Brugere I, Gallagher B, Berger-Wolf TY (2018) Network Structure Inference, A Survey: Motivations, Methods, and Applications. ACM Comput Surv 51(2):1–39
Chen B, Jiao S, Luo S, Ma B, Qi W, Cao C, Zhao Z, Du G, Ma X (2020) High soil pH enhances the network interactions among bacterial and archaeal microbiota in alpine grasslands of the Tibetan Plateau. Environ Microbiol 23(1):464–477
Chen, W., Wang, J., Chen, X., Meng, Z., Xu, R., Duoji, D., Zhang, J., He, J., Wang, Z., Chen, J., Liu, K., Hu, T., Zhang, Y., 2022. Soil microbial network complexity predicts ecosystem function along elevation gradients on the Tibetan Plateau. Soil Biol. Biochem. 172.
Coyte KZ, Schluter J, Foster KR (2015) The ecology of the microbiome: Networks, competition, and stability. Science 350:663–666
Crowther, T.W., van den Hoogen, J., Wan, J., Mayes, M.A., Keiser, A.D., Mo, L., Averill, C., Maynard, D.S., 2019. The global soil community and its influence on biogeochemistry. Science 365(6455), eaav0550.
de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, Hallin S, Kaisermann A, Keith AM, Kretzschmar M, Lemanceau P, Lumini E, Mason KE, Oliver A, Ostle N, Prosser JI, Thion C, Thomson B, Bardgett RD (2018) Soil bacterial networks are less stable under drought than fungal networks. Nat Commun 9(1):3033
Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, Bastida F, Berhe AA, Cutler NA, Gallardo A, Garcia-Velazquez L, Hart SC, Hayes PE, He JZ, Hseu ZY, Hu HW, Kirchmair M, Neuhauser S, Perez CA, Reed SC, Santos F, Sullivan BW, Trivedi P, Wang JT, Weber-Grullon L, Williams MA, Singh BK (2020) Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol 4(2):210–220
Eichorst SA, Trojan D, Roux S, Herbold C, Rattei T, Woebken D (2018) Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments. Environ Microbiol 20(3):1041–1063
Fan, K., Delgado-Baquerizo, M., Zhu, Y., Chu, H., 2020. Crop production correlates with soil multitrophic communities at the large spatial scale. Soil Biol. Biochem. 151.
Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10(8):538–550
Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103(3):626–631
Gao C, Xu L, Montoya L, Madera M, Hollingsworth J, Chen L, Purdom E, Singan V, Vogel J, Hutmacher RB, Dahlberg JA, Coleman-Derr D, Lemaux PG, Taylor JW (2022) Co-occurrence networks reveal more complexity than community composition in resistance and resilience of microbial communities. Nat Commun 13(1):3867
Goberna, M., Verdú, M., 2022. Cautionary notes on the use of co-occurrence networks in soil ecology. Soil Biol. Biochem. 166.
Grover, D., Mishra, A.K., Rani, P., Kalonia, N., Chaudhary, A., Sharma, S., 2024. Soil management in sustainable agriculture: principles and techniques. In: P. Kumar, Aishwarya (Eds.), Technological Approaches for Climate Smart Agriculture. Springer International Publishing, Cham, pp. 41–77.
Hartemink AE, Barrow NJ (2023) Soil pH - nutrient relationships: the diagram. Plant Soil 486(1–2):209–215
Hernandez DJ, David AS, Menges ES, Searcy CA, Afkhami ME (2021) Environmental stress destabilizes microbial networks. ISME J 15(6):1722–1734
Herren CM, McMahon KD (2017) Cohesion: a method for quantifying the connectivity of microbial communities. ISME J 11(11):2426–2438
Hug LA, Castelle CJ, Wrighton KC, Thomas BC, Sharon I, Frischkorn KR, Williams KH, Tringe SG, Banfield JF (2013) Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome 1(1):22
Jiao S, Yang Y, Xu Y, Zhang J, Lu Y (2020) Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME J 14(1):202–216
Jiao S, Lu Y, Wei G (2022a) Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Glob Chang Biol 28(1):140–153
Jiao S, Qi J, Jin C, Liu Y, Wang Y, Pan H, Chen S, Liang C, Peng Z, Chen B, Qian X, Wei G (2022b) Core phylotypes enhance the resistance of soil microbiome to environmental changes to maintain multifunctionality in agricultural ecosystems. Glob Chang Biol 28(22):6653–6664
Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26(11):1463–1464
Kerfahi, D., Guo, Y., Dong, K., Wang, Q., Adams, J.M., 2024. pH is the major predictor of soil microbial network complexity in Chinese forests along a latitudinal gradient. Catena 234.
Krulwich TA, Sachs G, Padan E (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 9(5):330–343
Lau, N.-S., Furusawa, G., 2024. Polysaccharide degradation in Cellvibrionaceae: Genomic insights of the novel chitin-degrading marine bacterium, strain KSP-S5–2, and its chitinolytic activity. Sci. Total Environ. 912.
Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40(9):2407–2415
Liu J, Zhou M, Wang S, Liu P (2017) A comparative study of network robustness measures. Front Comput Sci 11:568–584
Liu, C., Cui, Y., Li, X., Yao, M., 2021. microeco: an R package for data mining in microbial community ecology. FEMS Microbiol. Ecol. 97(2).
Liu, C., Li, C., Jiang, Y., Zeng, R.J., Yao, M., Li, X., 2023. A guide for comparing microbial co‐occurrence networks. iMeta 2(1).
Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, Ackermann M, Hahn AS, Srivastava DS, Crowe SA, Doebeli M, Parfrey LW (2018) Function and functional redundancy in microbial systems. Nat Ecol Evol 2(6):936–943
Lu R (2000) Analysis method of soil agricultural chemistry. China Agricultural Science and Technology Press, Beijing
Ma B, Wang H, Dsouza M, Lou J, He Y, Dai Z, Brookes PC, Xu J, Gilbert JA (2016) Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J 10(8):1891–1901
Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963
Malik, A.A., Puissant, J., Buckeridge, K.M., Goodall, T., Jehmlich, N., Chowdhury, S., Gweon, H.S., Peyton, J.M., Mason, K.E., van Agtmaal, M., Blaud, A., Clark, I.M., Whitaker, J., Pywell, R.F., Ostle, N., Gleixner, G., Griffiths, R.I., 2018. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 9(1).
Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17(1), 10.
McKee LS, La Rosa SL, Westereng B, Eijsink VG, Pope PB, Larsbrink J (2021) Polysaccharide degradation by the Bacteroidetes: mechanisms and nomenclature. Env Microbiol Rep 13(5):559–581
Morris BE, Henneberger R, Huber H, Moissl-Eichinger C (2013) Microbial syntrophy: interaction for the common good. FEMS Microbiol Rev 37(3):384–406
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara, R., Simpson, G.L., Solymos, P., Stevens, M.H.H., Wagner, H. (2013) vegan: community ecology package. R Package 2(9):1–295
Pechlivanis, N., Karakatsoulis, G., Kyritsis, K., Tsagiopoulou, M., Sgardelis, S., Kappas, I., Psomopoulos, F., 2024. Microbial co-occurrence network demonstrates spatial and climatic trends for global soil diversity. Sci. Data 11(1).
Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4(10):1340–1351
Sáez-Sandino T, García-Palacios P, Maestre FT, Plaza C, Guirado E, Singh BK, Wang J, Cano-Díaz C, Eisenhauer N, Gallardo A, Delgado-Baquerizo M (2023) The soil microbiome governs the response of microbial respiration to warming across the globe. Nat Clim Chang 13(12):1382–1387
Shi Y, Li Y, Yang T, Chu H (2021) Threshold effects of soil pH on microbial co-occurrence structure in acidic and alkaline arable lands. Sci Total Environ 800:149592
Shi Y, Xu M, Zhao Y, Cheng L, Chu H (2022) Soil pH determines the spatial distribution, assembly processes, and co-existence networks of microeukaryotic community in wheat fields of the North China Plain. Front Microbiol 13:911116
Slessarev EW, Lin Y, Bingham NL, Johnson JE, Dai Y, Schimel JP, Chadwick OA (2016) Water balance creates a threshold in soil pH at the global scale. Nature 540(7634):567–569
Sorokin DY, Lücker S, Vejmelkova D, Kostrikina NA, Kleerebezem R, Rijpstra WI, Damsté JS, Le Paslier D, Muyzer G, Wagner M, van Loosdrecht MC, Daims H (2012) Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. ISME J 6(12):2245–2256
Tu, Q., Yan, Q., Deng, Y., Michaletz, S.T., Buzzard, V., Weiser, M.D., Waide, R., Ning, D., Wu, L., He, Z., Zhou, J., 2020. Biogeographic patterns of microbial co-occurrence ecological networks in six American forests. Soil Biol. Biochem. 148.
Wang, J., Zou, J., 2020. No-till increases soil denitrification via its positive effects on the activity and abundance of the denitrifying community. Soil Biol. Biochem. 142.
Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl Environ Microbiol 73(16):5261–5267
Wilhelm RC, Singh R, Eltis LD, Mohn WW (2019) Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J 13(2):413–429
Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc Natl Acad Sci USA 96(4):1463–1468
Yang Y, Shi Y, Fang J, Chu H, Adams JM (2022) Soil microbial network complexity varies with pH as a continuum, not a threshold, across the North China Plain. Front Microbiol 13:895687
Ye, G., Wang, Y., Cui, X., Jin, Y., Hu, H., Liu, J., Guo, Z., Lin, Y., 2024. High stochasticity in rare bacterial community assembly in rice-wheat rotation soils at a regional scale. Soil Biol. Biochem. 195.
Yuan MM, Guo X, Wu L, Zhang Y, Xiao N, Ning D, Shi Z, Zhou X, Wu L, Yang Y, Tiedje JM, Zhou J (2021) Climate warming enhances microbial network complexity and stability. Nat Clim Chang 11(4):343–348
Zhou, J., Deng, Y., Luo, F., He, Z., Tu, Q., Zhi, X., Relman, D.A., 2010. Functional Molecular Ecological Networks. mBio 1(4).
Acknowledgements
This work was supported by National Natural Science Foundation of China (42407410), the Field Station Basic Research Project of the Chinese Academy of Sciences (KFJ-SW-YW043-2), Pilot Project for Mineral-land Integration of Jiangsu Province (3220220039), Jiangsu Provincial Territorial Ecological Monitoring, Jiangsu Agricultural Science and Technology Innovation Fund (CX (22) 2002) and Jiangsu Agricultural Biodiversity Cultivation and Utilization Research Center (0270756100ZX).
Author information
Authors and Affiliations
Contributions
Jianwei Zhang: Writing – original draft, Writing – review & editing, Formal analysis, Methodology, Investigation, Visualization, Conceptualization. Zhiying Guo: Writing – review & editing, Resources, Project administration, Funding acquisition, Supervision. Jie Liu: Methodology, Resources, Investigation, Writing – review & editing. XianZhang Pan: Resources, Supervision, Writing – review & editing. Yanan Huang: Writing – review & editing. Xiaodan Cui: Resources, Investigation. Yuanyuan Wang: Resources, Investigation. Yang Jin: Resources, Investigation. Jing Sheng: Writing – review & editing, Funding acquisition.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Responsible Editor: Gaowen Yang.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
ESM 1
(DOCX 1,699 KB)
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, J., Guo, Z., Liu, J. et al. Neutral pH induces complex and stable soil microbial networks in agricultural ecosystems. Plant Soil (2025). https://doi.org/10.1007/s11104-024-07195-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11104-024-07195-4