[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Neutral pH induces complex and stable soil microbial networks in agricultural ecosystems

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Soil pH critically influences microbial community diversity and structure, characterized by intricate network interactions among community members. However, the precise relationship between soil pH and microbial network complexity and stability remains inadequately explored.

Methods

We analyzed soil samples from 246 agricultural fields spanning 107,200 km2 in eastern China, employing a novel moving-window approach to examine key topological attributes of microbial networks across a pH gradient.

Results

Neutral pH (7.0) emerged as a critical threshold for microbial network dynamics. At this pH, networks exhibited maximal complexity, characterized by peak average degree, clustering coefficient, and density. These networks demonstrated superior stability, with enhanced robustness and network cohesion. Conversely, acidic and alkaline conditions corresponded to reduced network complexity and stability, revealing a non-linear pH-network relationship. Distinctive associate clusters at phylum level suggested pH-specific community assemblages.

Conclusion

Neutral soil pH optimizes microbial network complexity and stability. Our findings provide empirical insights into pH-mediated microbial community organization, offering fundamental implications for understanding soil microbial ecology and ecosystem management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The raw sequences used in this study have been deposited in DNA Data Bank of Japan (DDBJ) under the accession number of DRA016436.

References

  • Banerjee S, Schlaeppi K, van der Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16(9):567–576

    Article  PubMed  CAS  Google Scholar 

  • Barberán A, Bates ST, Casamayor EO, Fierer N (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 6(2):343–351

    Article  PubMed  Google Scholar 

  • Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515(7528):505–511

    Article  PubMed  CAS  Google Scholar 

  • Berdugo M, Maestre FT, Kéfi S, Gross N, Le Bagousse-Pinguet Y, Soliveres S, Gomez-Aparicio L (2018) Aridity preferences alter the relative importance of abiotic and biotic drivers on plant species abundance in global drylands. J Ecol 107(1):190–202

    Article  Google Scholar 

  • Berry, D., Widder, S., 2014. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 5.

  • Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH (2008) Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl Acad Sci USA 105(30):10583–10588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blanchet FG, Cazelles K, Gravel D, Jeffers E (2020) Co-occurrence is not evidence of ecological interactions. Ecol Lett 23(7):1050–1063

    Article  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu Y-X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotech 37(8):852–857

    Article  CAS  Google Scholar 

  • Brugere I, Gallagher B, Berger-Wolf TY (2018) Network Structure Inference, A Survey: Motivations, Methods, and Applications. ACM Comput Surv 51(2):1–39

    Article  Google Scholar 

  • Chen B, Jiao S, Luo S, Ma B, Qi W, Cao C, Zhao Z, Du G, Ma X (2020) High soil pH enhances the network interactions among bacterial and archaeal microbiota in alpine grasslands of the Tibetan Plateau. Environ Microbiol 23(1):464–477

    Article  PubMed  Google Scholar 

  • Chen, W., Wang, J., Chen, X., Meng, Z., Xu, R., Duoji, D., Zhang, J., He, J., Wang, Z., Chen, J., Liu, K., Hu, T., Zhang, Y., 2022. Soil microbial network complexity predicts ecosystem function along elevation gradients on the Tibetan Plateau. Soil Biol. Biochem. 172.

  • Coyte KZ, Schluter J, Foster KR (2015) The ecology of the microbiome: Networks, competition, and stability. Science 350:663–666

    Article  PubMed  CAS  Google Scholar 

  • Crowther, T.W., van den Hoogen, J., Wan, J., Mayes, M.A., Keiser, A.D., Mo, L., Averill, C., Maynard, D.S., 2019. The global soil community and its influence on biogeochemistry. Science 365(6455), eaav0550.

  • de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, Hallin S, Kaisermann A, Keith AM, Kretzschmar M, Lemanceau P, Lumini E, Mason KE, Oliver A, Ostle N, Prosser JI, Thion C, Thomson B, Bardgett RD (2018) Soil bacterial networks are less stable under drought than fungal networks. Nat Commun 9(1):3033

    Article  PubMed  PubMed Central  Google Scholar 

  • Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, Bastida F, Berhe AA, Cutler NA, Gallardo A, Garcia-Velazquez L, Hart SC, Hayes PE, He JZ, Hseu ZY, Hu HW, Kirchmair M, Neuhauser S, Perez CA, Reed SC, Santos F, Sullivan BW, Trivedi P, Wang JT, Weber-Grullon L, Williams MA, Singh BK (2020) Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol 4(2):210–220

    Article  PubMed  Google Scholar 

  • Eichorst SA, Trojan D, Roux S, Herbold C, Rattei T, Woebken D (2018) Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments. Environ Microbiol 20(3):1041–1063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan, K., Delgado-Baquerizo, M., Zhu, Y., Chu, H., 2020. Crop production correlates with soil multitrophic communities at the large spatial scale. Soil Biol. Biochem. 151.

  • Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10(8):538–550

    Article  PubMed  CAS  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103(3):626–631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao C, Xu L, Montoya L, Madera M, Hollingsworth J, Chen L, Purdom E, Singan V, Vogel J, Hutmacher RB, Dahlberg JA, Coleman-Derr D, Lemaux PG, Taylor JW (2022) Co-occurrence networks reveal more complexity than community composition in resistance and resilience of microbial communities. Nat Commun 13(1):3867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goberna, M., Verdú, M., 2022. Cautionary notes on the use of co-occurrence networks in soil ecology. Soil Biol. Biochem. 166.

  • Grover, D., Mishra, A.K., Rani, P., Kalonia, N., Chaudhary, A., Sharma, S., 2024. Soil management in sustainable agriculture: principles and techniques. In: P. Kumar, Aishwarya (Eds.), Technological Approaches for Climate Smart Agriculture. Springer International Publishing, Cham, pp. 41–77.

  • Hartemink AE, Barrow NJ (2023) Soil pH - nutrient relationships: the diagram. Plant Soil 486(1–2):209–215

    Article  CAS  Google Scholar 

  • Hernandez DJ, David AS, Menges ES, Searcy CA, Afkhami ME (2021) Environmental stress destabilizes microbial networks. ISME J 15(6):1722–1734

    Article  PubMed  PubMed Central  Google Scholar 

  • Herren CM, McMahon KD (2017) Cohesion: a method for quantifying the connectivity of microbial communities. ISME J 11(11):2426–2438

    Article  PubMed  PubMed Central  Google Scholar 

  • Hug LA, Castelle CJ, Wrighton KC, Thomas BC, Sharon I, Frischkorn KR, Williams KH, Tringe SG, Banfield JF (2013) Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome 1(1):22

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiao S, Yang Y, Xu Y, Zhang J, Lu Y (2020) Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME J 14(1):202–216

    Article  PubMed  Google Scholar 

  • Jiao S, Lu Y, Wei G (2022a) Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Glob Chang Biol 28(1):140–153

    Article  PubMed  CAS  Google Scholar 

  • Jiao S, Qi J, Jin C, Liu Y, Wang Y, Pan H, Chen S, Liang C, Peng Z, Chen B, Qian X, Wei G (2022b) Core phylotypes enhance the resistance of soil microbiome to environmental changes to maintain multifunctionality in agricultural ecosystems. Glob Chang Biol 28(22):6653–6664

    Article  PubMed  CAS  Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26(11):1463–1464

    Article  PubMed  CAS  Google Scholar 

  • Kerfahi, D., Guo, Y., Dong, K., Wang, Q., Adams, J.M., 2024. pH is the major predictor of soil microbial network complexity in Chinese forests along a latitudinal gradient. Catena 234.

  • Krulwich TA, Sachs G, Padan E (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 9(5):330–343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lau, N.-S., Furusawa, G., 2024. Polysaccharide degradation in Cellvibrionaceae: Genomic insights of the novel chitin-degrading marine bacterium, strain KSP-S5–2, and its chitinolytic activity. Sci. Total Environ. 912.

  • Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40(9):2407–2415

    Article  CAS  Google Scholar 

  • Liu J, Zhou M, Wang S, Liu P (2017) A comparative study of network robustness measures. Front Comput Sci 11:568–584

    Article  Google Scholar 

  • Liu, C., Cui, Y., Li, X., Yao, M., 2021. microeco: an R package for data mining in microbial community ecology. FEMS Microbiol. Ecol. 97(2).

  • Liu, C., Li, C., Jiang, Y., Zeng, R.J., Yao, M., Li, X., 2023. A guide for comparing microbial co‐occurrence networks. iMeta 2(1).

  • Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, Ackermann M, Hahn AS, Srivastava DS, Crowe SA, Doebeli M, Parfrey LW (2018) Function and functional redundancy in microbial systems. Nat Ecol Evol 2(6):936–943

    Article  PubMed  Google Scholar 

  • Lu R (2000) Analysis method of soil agricultural chemistry. China Agricultural Science and Technology Press, Beijing

    Google Scholar 

  • Ma B, Wang H, Dsouza M, Lou J, He Y, Dai Z, Brookes PC, Xu J, Gilbert JA (2016) Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J 10(8):1891–1901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963

    Article  PubMed  PubMed Central  Google Scholar 

  • Malik, A.A., Puissant, J., Buckeridge, K.M., Goodall, T., Jehmlich, N., Chowdhury, S., Gweon, H.S., Peyton, J.M., Mason, K.E., van Agtmaal, M., Blaud, A., Clark, I.M., Whitaker, J., Pywell, R.F., Ostle, N., Gleixner, G., Griffiths, R.I., 2018. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 9(1).

  • Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17(1), 10.

  • McKee LS, La Rosa SL, Westereng B, Eijsink VG, Pope PB, Larsbrink J (2021) Polysaccharide degradation by the Bacteroidetes: mechanisms and nomenclature. Env Microbiol Rep 13(5):559–581

    Article  CAS  Google Scholar 

  • Morris BE, Henneberger R, Huber H, Moissl-Eichinger C (2013) Microbial syntrophy: interaction for the common good. FEMS Microbiol Rev 37(3):384–406

    Article  PubMed  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara, R., Simpson, G.L., Solymos, P., Stevens, M.H.H., Wagner, H. (2013) vegan: community ecology package. R Package 2(9):1–295

    Google Scholar 

  • Pechlivanis, N., Karakatsoulis, G., Kyritsis, K., Tsagiopoulou, M., Sgardelis, S., Kappas, I., Psomopoulos, F., 2024. Microbial co-occurrence network demonstrates spatial and climatic trends for global soil diversity. Sci. Data 11(1).

  • Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4(10):1340–1351

    Article  PubMed  Google Scholar 

  • Sáez-Sandino T, García-Palacios P, Maestre FT, Plaza C, Guirado E, Singh BK, Wang J, Cano-Díaz C, Eisenhauer N, Gallardo A, Delgado-Baquerizo M (2023) The soil microbiome governs the response of microbial respiration to warming across the globe. Nat Clim Chang 13(12):1382–1387

    Article  Google Scholar 

  • Shi Y, Li Y, Yang T, Chu H (2021) Threshold effects of soil pH on microbial co-occurrence structure in acidic and alkaline arable lands. Sci Total Environ 800:149592

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Xu M, Zhao Y, Cheng L, Chu H (2022) Soil pH determines the spatial distribution, assembly processes, and co-existence networks of microeukaryotic community in wheat fields of the North China Plain. Front Microbiol 13:911116

    Article  PubMed  PubMed Central  Google Scholar 

  • Slessarev EW, Lin Y, Bingham NL, Johnson JE, Dai Y, Schimel JP, Chadwick OA (2016) Water balance creates a threshold in soil pH at the global scale. Nature 540(7634):567–569

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Lücker S, Vejmelkova D, Kostrikina NA, Kleerebezem R, Rijpstra WI, Damsté JS, Le Paslier D, Muyzer G, Wagner M, van Loosdrecht MC, Daims H (2012) Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. ISME J 6(12):2245–2256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tu, Q., Yan, Q., Deng, Y., Michaletz, S.T., Buzzard, V., Weiser, M.D., Waide, R., Ning, D., Wu, L., He, Z., Zhou, J., 2020. Biogeographic patterns of microbial co-occurrence ecological networks in six American forests. Soil Biol. Biochem. 148.

  • Wang, J., Zou, J., 2020. No-till increases soil denitrification via its positive effects on the activity and abundance of the denitrifying community. Soil Biol. Biochem. 142.

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl Environ Microbiol 73(16):5261–5267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilhelm RC, Singh R, Eltis LD, Mohn WW (2019) Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J 13(2):413–429

    Article  PubMed  CAS  Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc Natl Acad Sci USA 96(4):1463–1468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Y, Shi Y, Fang J, Chu H, Adams JM (2022) Soil microbial network complexity varies with pH as a continuum, not a threshold, across the North China Plain. Front Microbiol 13:895687

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye, G., Wang, Y., Cui, X., Jin, Y., Hu, H., Liu, J., Guo, Z., Lin, Y., 2024. High stochasticity in rare bacterial community assembly in rice-wheat rotation soils at a regional scale. Soil Biol. Biochem. 195.

  • Yuan MM, Guo X, Wu L, Zhang Y, Xiao N, Ning D, Shi Z, Zhou X, Wu L, Yang Y, Tiedje JM, Zhou J (2021) Climate warming enhances microbial network complexity and stability. Nat Clim Chang 11(4):343–348

    Article  Google Scholar 

  • Zhou, J., Deng, Y., Luo, F., He, Z., Tu, Q., Zhi, X., Relman, D.A., 2010. Functional Molecular Ecological Networks. mBio 1(4).

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (42407410), the Field Station Basic Research Project of the Chinese Academy of Sciences (KFJ-SW-YW043-2), Pilot Project for Mineral-land Integration of Jiangsu Province (3220220039), Jiangsu Provincial Territorial Ecological Monitoring, Jiangsu Agricultural Science and Technology Innovation Fund (CX (22) 2002) and Jiangsu Agricultural Biodiversity Cultivation and Utilization Research Center (0270756100ZX).

Author information

Authors and Affiliations

Authors

Contributions

Jianwei Zhang: Writing – original draft, Writing – review & editing, Formal analysis, Methodology, Investigation, Visualization, Conceptualization. Zhiying Guo: Writing – review & editing, Resources, Project administration, Funding acquisition, Supervision. Jie Liu: Methodology, Resources, Investigation, Writing – review & editing. XianZhang Pan: Resources, Supervision, Writing – review & editing. Yanan Huang: Writing – review & editing. Xiaodan Cui: Resources, Investigation. Yuanyuan Wang: Resources, Investigation. Yang Jin: Resources, Investigation. Jing Sheng: Writing – review & editing, Funding acquisition.

Corresponding authors

Correspondence to Zhiying Guo or Jing Sheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Gaowen Yang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1,699 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Guo, Z., Liu, J. et al. Neutral pH induces complex and stable soil microbial networks in agricultural ecosystems. Plant Soil (2025). https://doi.org/10.1007/s11104-024-07195-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11104-024-07195-4

Keywords

Navigation