[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Plant physiological and molecular responses triggered by humic based biostimulants - A way forward to sustainable agriculture

  • Review Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

The global population is increasing at a pace that food security has become a major concern. The 20th-century Green Revolution saved billions of people from starvation, but the continuous widespread utilization of pesticides and synthetic fertilizers to boost yields has negatively impacted arable lands, water resources, and the environment. Moreover, the production and use of chemical inputs contribute to global climate change. But this impact could be reduced by replacing synthetic chemical inputs with sustainable resources. A promising and environmentally friendly approach to reduce synthetic chemicals is to incorporate biostimulants from sustainable resources. Humic substances (HSs) are composed of humic, fulvic, and ulmic acids and are the most abundant organic matter on earth. They are well known for their beneficial effects on plant growth and development.

Scope

This review encompasses the most recent findings related to the bio-stimulatory effects of HSs in modulating phytohormone biosynthesis, nutrient uptake and assimilation, primary and secondary metabolism, and tolerance to biotic and abiotic stresses.

Conclusion

Existing evidence shows that HSs have multifaceted actions that are attributed to different functional groups and other bioactive compounds enclosed in their macrostructure. Studies have shown that HSs possess auxin-like properties that alter plant metabolism which results in beneficial effects on plant growth and productivity, such as improved nutrient use efficiency and increased abiotic and biotic stress tolerance. In future studies, delineating the mechanisms that can pave the way to further refine these products and increase their efficacy to amplify beneficial effects is required to develop novel products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data availability is not applicable for this review as no datasets were generated.

Abbreviations

HSs:

Humic substances

HA:

Humic acid

FA:

Fulvic acid

IAA:

Indole acetic acid

NO:

Nitric oxide

ROS:

Reactive oxygen species

PAL:

Phenylalanine ammonia-lyase

References

  • Abdellatif IMY, Abdel-Ati YY, Abdel-Mageed YT, Hassan MA-MM (2017) Effect of humic acid on growth and productivity of tomato plants under heat stress. J Hortic Res 25:59–66

    CAS  Google Scholar 

  • Abu-Ria M, Shukry W, Abo-Hamed S, Albaqami M, Almuqadam L, Ibraheem F (2023) Humic acid modulates ionic homeostasis, osmolytes content, and antioxidant defense to improve salt tolerance in rice. Plants 12:1834

    PubMed  PubMed Central  CAS  Google Scholar 

  • Adil A, Canan K, Metin T (2012) Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. Afr J Agric Res 7:1073–1086

    Google Scholar 

  • Afifi M, Ismail A, Kamel S, Essa T (2017) Humic substances: a powerful tool for controlling fusarium wilt disease and improving the growth of cucumber plants. J Plant Pathol 99:61–67

  • Aguiar NO, Olivares FL, Novotny EH, Dobbss LB, Balmori DM, Santos-Júnior LG, Chagas JG, Façanha AR, Canellas LP (2013) Bioactivity of humic acids isolated from vermicomposts at different maturation stages. Plant Soil 362:161–174

    CAS  Google Scholar 

  • Ahmad T, Khan R, Nawaz Khattak T (2018) Effect of humic acid and fulvic acid based liquid and foliar fertilizers on the yield of wheat crop. J Plant Nutr 41:2438–2445

    CAS  Google Scholar 

  • Ahmed M, Rauf M, Mukhtar Z, Saeed NA (2017) Excessive use of nitrogenous fertilizers: an unawareness causing serious threats to environment and human health. Environ Sci Pollut Res 24:26983–26987

    Google Scholar 

  • Akhtar SS, Mekureyaw MF, Pandey C, Roitsch T (2020) Role of cytokinins for interactions of plants with microbial pathogens and pest insects. Front Plant Sci 10:1777

    PubMed  PubMed Central  Google Scholar 

  • Alamri S, Hu Y, Mukherjee S, Aftab T, Fahad S, Raza A, Ahmad M, Siddiqui MH (2020) Silicon-induced postponement of leaf senescence is accompanied by modulation of antioxidative defense and ion homeostasis in mustard (Brassica juncea) seedlings exposed to salinity and drought stress. Plant Physiol Biochem 157:47–59

    PubMed  CAS  Google Scholar 

  • Albuzio A, Nardi S, Gulli A (1989) Plant growth regulator activity of small molecular size humic fractions. Sci Total Environ 81:671–674

    Google Scholar 

  • Ampong K, Thilakaranthna MS, Gorim LY (2022) Understanding the role of humic acids on crop performance and soil health. Front Agron 4:848621

  • Angin I, Turan M, Ketterings QM, Cakici A (2008) Humic acid addition enhances B and Pb phytoextraction by vetiver grass (Vetiveria zizanioides (L.) Nash). Water Air Soil Pollut 188:335–343

  • Ansari WA, Atri N, Pandey M, Singh AK, Singh B, Pandey S (2019) Influence of drought stress on morphological, physiological and biochemical attributes of plants: a review. Biosci Biotechnol Res Asia 16:697–709

    Google Scholar 

  • Antoni R, Gonzalez-Guzman M, Rodriguez L, Rodrigues A, Pizzio GA, Rodriguez PL (2012) Selective inhibition of clade A phosphatases type 2 C by PYR/PYL/RCAR abscisic acid receptors. Plant Physiol 158:970–980

    PubMed  CAS  Google Scholar 

  • Aranaz J, de Hita D, Olaetxea M, Urrutia O, Fuentes M, Baigorri R, Garnica M, Movial M, Arregui AZ, Garcia-Mina J (2023). The molecular conformation, but not disaggregation, of humic acid in water solution plays a crucial role in promoting plant development in the natural environment. Front Plant Sci 14:1180688

    Google Scholar 

  • Arnaud C, Clément M, Thibaud M-C, Javot H, Chiarenza S, Delannoy E, Revol J, Soreau P, Balzergue S, Block MA (2014) Identification of phosphatin, a drug alleviating phosphate starvation responses in Arabidopsis. Plant Physiol 166:1479–1491

  • Arslan E, Agar G, Aydin M (2021) Humic acid as a biostimulant in improving drought tolerance in wheat: the expression patterns of drought-related genes. Plant Mol Biol Rep 39:508–519

    CAS  Google Scholar 

  • Baía DC, Olivares FL, Zandonadi DB, de Paula Soares C, Spaccini R, Canellas LP (2020) Humic acids trigger the weak acids stress response in maize seedlings. Chem Biol Technol Agric 7:1–13

    Google Scholar 

  • Baltazar M, Correia S, Guinan KJ, Sujeeth N, Bragança R, Gonçalves B (2021) Recent advances in the molecular effects of biostimulants in plants: an overview. Biomolecules 11:1096

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bento LR, Melo CA, Ferreira OP, Moreira AB, Mounier S, Piccolo A, Spaccini R, Bisinoti MC (2020) Humic extracts of hydrochar and amazonian Dark Earth: molecular characteristics and effects on maize seed germination. Sci Total Environ 708:135000

    PubMed  CAS  Google Scholar 

  • Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bettaieb T, Arbaoui S (2018) Heavy metal accumulation in micropropagated plants of kenaf (Hibiscus cannabinus L). Int J Adv Sci Eng Technol 6:32–33

    Google Scholar 

  • Billard V, Etienne P, Jannin L, Garnica M, Cruz F, Garcia-Mina J-M, Yvin J-C, Ourry A (2014) Two biostimulants derived from algae or humic acid induce similar responses in the mineral content and gene expression of winter oilseed rape (Brassica napus L). J Plant Growth Regul 33:305–316

    CAS  Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    PubMed  PubMed Central  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    PubMed  CAS  Google Scholar 

  • Boudsocq M, Droillard M-J, Barbier-Brygoo H, Laurière C (2007) Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol Biol 63:491–503

    PubMed  CAS  Google Scholar 

  • Briar SS, Wichman D, Reddy GV (2016) Plant-parasitic nematode problems in organic agriculture. In: Nandwani D (ed) Organic Farming for Sustainable Agriculture. Springer International Publishing, Switzerland 9:107–122

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    CAS  Google Scholar 

  • Canellas LP, Olivares FL (2014) Physiological responses to humic substances as plant growth promoter. Chem Biol Technol Agric 1:1–11

    Google Scholar 

  • Canellas LP, Olivares FL (2017) Production of border cells and colonization of maize root tips by Herbaspirillum seropedicae are modulated by humic acid. Plant Soil 417:403–413

    CAS  Google Scholar 

  • Canellas LP, Olivares FL, Okorokova-Façanha AL, Façanha AR (2002) Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol 130:1951–1957

    PubMed  PubMed Central  CAS  Google Scholar 

  • Canellas L, Teixeira Junior L, Dobbss L, Silva C, Medici L, Zandonadi D, Façanha A (2008) Humic acids crossinteractions with root and organic acids. Ann Appl Biol 153:157–166

    CAS  Google Scholar 

  • Canellas LP, Zandonadi DB, Busato JG, Baldotto MA, Simões ML, Martin-Neto L, Façanha AR, Spaccini R, Piccolo A (2008) Bioactivity and chemical characteristics of humic acids from tropical soils sequence. Soil Sci 173:624–637

    CAS  Google Scholar 

  • Canellas LP, Piccolo A, Dobbss LB, Spaccini R, Olivares FL, Zandonadi DB, Façanha AR (2010) Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid. Chemosphere 78:457–466

    PubMed  CAS  Google Scholar 

  • Canellas L, Dantas D, Aguiar N, Peres L, Zsögön A, Olivares F, Dobbss L, Façanha A, Nebbioso A, Piccolo A (2011) Probing the hormonal activity of fractionated molecular humic components in tomato auxin mutants. Ann Appl Biol 159:202–211

    CAS  Google Scholar 

  • Canellas LP, Balmori DM, Médici LO, Aguiar NO, Campostrini E, Rosa RC, Façanha AR, Olivares FL (2013) A combination of humic substances and Herbaspirillum seropedicae inoculation enhances the growth of maize (Zea mays L). Plant Soil 366:119–132

    CAS  Google Scholar 

  • Canellas LP, Olivares FL, Aguiar NO, Jones DL, Nebbioso A, Mazzei P, Piccolo A (2015) Humic and fulvic acids as biostimulants in horticulture. Sci Hortic 196:15–27

    CAS  Google Scholar 

  • Canellas LP, Canellas NO, Soares TS, Olivares FL (2019) Humic acids interfere with nutrient sensing in plants owing to the differential expression of TOR. J Plant Growth Regul 38:216–224

    CAS  Google Scholar 

  • Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171

    PubMed  CAS  Google Scholar 

  • Cerdán M, Sánchez-Sánchez A, Juarez M, Sánchez‐Andreu JJ, Jordá JD, Bermúdez D (2007) Partial replacement of Fe (o, o‐EDDHA) by humic substances for Fe nutrition and fruit quality of citrus. J Plant Nutr Soil Sci 170:474–478

    Google Scholar 

  • Cha J-Y, Kang S-H, Ali I, Lee SC, Ji MG, Jeong SY, Shin G-I, Kim MG, Jeon J-R, Kim W-Y (2020) Humic acid enhances heat stress tolerance via transcriptional activation of heat-shock proteins in Arabidopsis. Sci Rep 10:15042

  • Cha J-Y, Kang S-H, Ji MG, Shin G-I, Jeong SY, Ahn G, Kim MG, Jeon J-R, Kim W-Y (2021) Transcriptome changes reveal the molecular mechanisms of humic acid-induced salt stress tolerance in Arabidopsis. Molecules 26:782

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Y, Ma J, Li Y, Weng L (2019) Enhanced cadmium immobilization in saturated media by gradual stabilization of goethite in the presence of humic acid with increasing pH. Sci Total Environ 648:358–366

    PubMed  CAS  Google Scholar 

  • Chen Q, Qu Z, Ma G, Wang W, Dai J, Zhang M, Wei Z, Liu Z (2022) Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions. Agric Water Manag 263:107447

    Google Scholar 

  • Cheng L, Bucciarelli B, Liu J, Zinn K, Miller S, Patton-Vogt J, Allan D, Shen J, Vance CP (2011) White lupin cluster root acclimation to phosphorus deficiency and root hair development involve unique glycerophosphodiester phosphodiesterases. Plant Physiol 156:1131–1148

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chitwood DJ (2002) Phytochemical based strategies for nematode control. Annu Rev Phytopathol 40:221–249

    PubMed  CAS  Google Scholar 

  • Choudhury A, Kennedy I (2005) Nitrogen fertilizer losses from rice soils and control of environmental pollution problems. Commun Soil Sci Plant Anal 36:1625–1639

    CAS  Google Scholar 

  • Colombo C, Palumbo G, Angelico R, Cho HG, Francioso O, Ertani A, Nardi S (2015) Spontaneous aggregation of humic acid observed with AFM at different pH. Chemosphere 138:821–828

    PubMed  CAS  Google Scholar 

  • Conselvan GB, Fuentes D, Merchant A, Peggion C, Francioso O, Carletti P (2018) Effects of humic substances and indole-3-acetic acid on Arabidopsis sugar and amino acid metabolic profile. Plant Soil 426:17–32

    CAS  Google Scholar 

  • Cordeiro FC, Santa-Catarina C, de Silveira V, Souza SR (2011) Humic acid effect on catalase activity and the generation of reactive oxygen species in corn (Zea mays). Biosci Biotechnol Biochem 75:70–74

    PubMed  CAS  Google Scholar 

  • Darcy JL, Schmidt SK, Knelman JE, Cleveland CC, Castle SC, Nemergut DR (2018) Phosphorus, not nitrogen, limits plants and microbial primary producers following glacial retreat. Sci Adv 4:eaaq0942

    PubMed  PubMed Central  Google Scholar 

  • Dawood MG, Abdel-Baky YR, El-Awadi ME-S, Bakhoum GS (2019) Enhancement quality and quantity of faba bean plants grown under sandy soil conditions by nicotinamide and/or humic acid application. Bull Natl Res Cent 43:1–8

    Google Scholar 

  • De Hita D, Fuentes M, Fernández V, Zamarreño AM, Olaetxea M, García-Mina JM (2020) Discriminating the short-term action of root and foliar application of humic acids on plant growth: emerging role of jasmonic acid. Front Plant Sci 11:493

    PubMed  PubMed Central  Google Scholar 

  • Delfine S, Tognetti R, Desiderio E, Alvino A (2005) Effect of foliar application of N and humic acids on growth and yield of durum wheat. Agron Sustain Dev 25:183–191

    CAS  Google Scholar 

  • Dobbss L, Medici L, Peres LEP, Pino-Nunes L, Rumjanek V, Façanha A, Canellas L (2007) Changes in root development of Arabidopsis promoted by organic matter from oxisols. Ann Appl Biol 151:199–211

    CAS  Google Scholar 

  • Dogan M, Bolat I, Karakas S, Dikilitas M, Gutiérrez-Gamboa G, Kaya O (2022) Remediation of cadmium stress in strawberry plants using humic acid and silicon applications. Life 12:1962

  • Elmongy MS, Wang X, Zhou H, Xia Y (2020) Humic acid and auxins induced metabolic changes and differential gene expression during adventitious root development in Azalea microshoots. HortSci 55:926–935

    CAS  Google Scholar 

  • Ertani A, Francioso O, Tugnoli V, Righi V, Nardi S (2011) Effect of commercial lignosulfonate-humate on Zea mays L. metabolism. J Agric Food Chem 59:11940–11948

    PubMed  CAS  Google Scholar 

  • Ertani A, Nardi S, Francioso O, Pizzeghello D, Tinti A, Schiavon M (2019) Metabolite-targeted analysis and physiological traits of Zea mays L. in response to application of a leonardite-humate and lignosulfonate-based products for their evaluation as potential biostimulants. Agronomy 9:445

    CAS  Google Scholar 

  • Evangelou MW, Daghan H, Schaeffer A (2004) The influence of humic acids on the phytoextraction of cadmium from soil. Chemosphere 57:207–213

    PubMed  CAS  Google Scholar 

  • Faccin D, Di Piero R (2022) Extracts and fractions of humic substances reduce bacterial spot severity in tomato plants, improve primary metabolism and activate the plant defense system. Physiol Mol Plant Pathol 121:101877

    CAS  Google Scholar 

  • Fageria NK, Nascente AS (2014) Management of soil acidity of south american soils for sustainable crop production. Adv Agron 128:221–275

    Google Scholar 

  • Fageria NK, He Z, Baligar VC (2017) Phosphorus management in crop production. CRC Press, Boca Raton

  • FAO (2008) Land and plant nutrition management service. ProSoil–Problem Soils Database, http://www.fao.org. Accessed 14 Jan 2023

  • Farooq MS, Uzaiir M, Raza A, Habib M, Xu Y, Yousuf M, Yang SH, Ramzan Khan M (2022) Uncovering the research gaps to alleviate the negative impacts of climate change on food security: a review. Front Plant Sci 13:927535

  • Field CB, Barros VR (2014) Climate change 2014–Impacts, adaptation and vulnerability: Regional aspects. Cambridge University Press, Cambridge

  • Firon N, Shaked R, Peet M, Pharr D, Zamski E, Rosenfeld K, Althan L, Pressman E (2006) Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Sci Hortic 109:212–217

    CAS  Google Scholar 

  • Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz-Espejo A, Douthe C, Dreyer E, Ferrio JP, Gago J (2012) Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci 193:70–84

    PubMed  Google Scholar 

  • Flores T, Todd CD, Tovar-Mendez A, Dhanoa PK, Correa-Aragunde N, Hoyos ME, Brownfield DM, Mullen RT, Lamattina L, Polacco JC (2008) Arginase-negative mutants of Arabidopsis exhibit increased nitric oxide signaling in root development. Plant Physiol 147:1936–1946

    PubMed  PubMed Central  CAS  Google Scholar 

  • Frankenberger WT, Arshad M (2020) Phytohormones in soils: microbial production and function. CRC Press, Boca Raton

  • Frías I, Caldeira MT, Pérez-Castiñeira JR, Navarro-Aviñó JP, Culiañez-Maciá FA, Kuppinger O, Stransky H, Pagés M, Hager A, Serrano R (1996) A major isoform of the maize plasma membrane H+-ATPase: characterization and induction by auxin in coleoptiles. Plant Cell 8:1533–1544

  • Fu Y-F, Yang X-Y, Zhang Z-W, Yuan S (2022) Synergistic effects of nitrogen metabolites on auxin regulating plant growth and development. Front Plant Sci 13:1098787

  • Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park S-Y, Cutler SR, Sheen J, Rodriguez PL, Zhu J-K (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462:660–664

    PubMed  PubMed Central  CAS  Google Scholar 

  • García AC, de Souza LGA, Pereira MG, Castro RN, García-Mina JM, Zonta E, Lisboa FJG, Berbara RLL (2016a) Structure-property-function relationship in humic substances to explain the biological activity in plants. Sci Rep 6:20798

    Google Scholar 

  • García AC, Olaetxea M, Santos LA, Mora V, Baigorri R, Fuentes M, Zamarreño AM, Berbara RLL, Garcia-Mina JM (2016b) Involvement of hormone-and ROS-signaling pathways in the beneficial action of humic substances on plants growing under normal and stressing conditions. BioMed Res Int 2016:3747501

  • García AC, Santos LA, de Souza LGA, Tavares OCH, Zonta E, Gomes ETM, García-Mina JM, Berbara RLL (2016c) Vermicompost humic acids modulate the accumulation and metabolism of ROS in rice plants. J Plant Physiol 192:56–63

    PubMed  Google Scholar 

  • Garcia-Mina J, Antolin M, Sanchez-Diaz M (2004) Metal-humic complexes and plant micronutrient uptake: a study based on different plant species cultivated in diverse soil types. Plant Soil 258:57–68

    CAS  Google Scholar 

  • Gerke J (2021) The effect of humic substances on phosphate and iron acquisition by higher plants: qualitative and quantitative aspects. J Plant Nutr Soil Sci 184:329–338

    CAS  Google Scholar 

  • Ghaly A, Ramakrishnan V (2015) Nitrogen sources and cycling in the ecosystem and its role in air, water and soil pollution: A critical review. J Pollut Eff Control 3(2):1–26

  • Gómez-Cadenas A, Verhey SD, Holappa LD, Shen Q, Ho T-HD, Walker-Simmons M (1999) An abscisic acid-induced protein kinase, PKABA1, mediates abscisic acid-suppressed gene expression in barley aleurone layers. Proc Natl Acad Sci 96:1767–1772

    PubMed  PubMed Central  Google Scholar 

  • Gosti F, Beaudoin N, Serizet C, Webb AA, Vartanian N, Giraudat J (1999) ABI1 protein phosphatase 2 C is a negative regulator of abscisic acid signaling. Plant Cell 11:1897–1909

    PubMed  PubMed Central  CAS  Google Scholar 

  • Guardado I, Urrutia O, Garcia-Mina JM (2007) Size distribution, complexing capacity, and stability of phosphate – metal – humic complexes. J Agric Food Chem 55:408–413

    PubMed  CAS  Google Scholar 

  • Guo X-x, Liu H-t, Wu S-b (2019) Humic substances developed during organic waste composting: formation mechanisms, structural properties, and agronomic functions. Sci Total Environ 662:501–510

    PubMed  CAS  Google Scholar 

  • Gururani MA, Mohanta TK, Bae H (2015) Current understanding of the interplay between phytohormones and photosynthesis under environmental stress. Int J Mol Sci 16:19055–19085

    PubMed  PubMed Central  CAS  Google Scholar 

  • Helfenstein J, Tamburini F, von Sperber C, Massey MS, Pistocchi C, Chadwick OA, Vitousek PM, Kretzschmar R, Frossard E (2018) Combining spectroscopic and isotopic techniques gives a dynamic view of phosphorus cycling in soil. Nat Commun 9:3226

    CAS  Google Scholar 

  • Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, Kim H, Kanae S (2013) Global flood risk under climate change. Nat Clim Change 3:816–821

    Google Scholar 

  • Hirel B, Tétu T, Lea PJ, Dubois F (2011) Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 3:1452-1485

    CAS  Google Scholar 

  • Hou E, Tang S, Chen C, Kuang Y, Lu X, Heenan M, Wen D (2018) Solubility of phosphorus in subtropical forest soils as influenced by low-molecular organic acids and key soil properties. Geoderma 313:172–180

    CAS  Google Scholar 

  • Hufnagel B, de Sousa SM, Assis L, Guimaraes CT, Leiser W, Azevedo GC, Negri B, Larson BG, Shaff JE, Pastina MM (2014) Duplicate and conquer: multiple homologs of phosphorus-starvation tolerance1 enhance phosphorus acquisition and sorghum performance on low-phosphorus soils. Plant Physiol 166:659–677

    PubMed  PubMed Central  Google Scholar 

  • Iizumi T, Sakuma H, Yokozawa M, Luo J-J, Challinor AJ, Brown ME, Sakurai G, Yamagata T (2013) Prediction of seasonal climate-induced variations in global food production. Nat Clim Change 3:904–908

    Google Scholar 

  • Jannin L, Arkoun M, Ourry A, Laîné P, Goux D, Garnica M, Fuentes M, Francisco SS, Baigorri R, Cruz F (2012) Microarray analysis of humic acid effects on Brassica napus growth: involvement of N, C and S metabolisms. Plant Soil 359:297–319

    CAS  Google Scholar 

  • Jarošová M, Klejdus B, Kováčik J, Babula P, Hedbavny J (2016) Humic acid protects barley against salinity. Acta Physiol Plant 38:1–9

    Google Scholar 

  • Jiang N, Wu M, Li G, Petropoulos E, Sun F, Wang X, Liu J, Liu M, Li Z (2022) Humic substances suppress Fusarium oxysporum by regulating soil microbial community in the rhizosphere of cucumber (Cucumis sativus L). Appl Soil Ecol 174:104389

    Google Scholar 

  • Jindo K, Soares TS, Peres LEP, Azevedo IG, Aguiar NO, Mazzei P, Spaccini R, Piccolo A, Olivares FL, Canellas LP (2016) Phosphorus speciation and high-affinity transporters are influenced by humic substances. J Plant Nutr Soil Sci 179:206–214

    CAS  Google Scholar 

  • Jones DL, Darrah PR (1994) Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166:247–257

    CAS  Google Scholar 

  • Jothi G, Poornima K (2019) Biochemical changes in vegetable crops due to humic acid treatment for management of nematodes. Ann Plant Prot Sci 27:161–165

    Google Scholar 

  • Jothi G, Poornima K (2019) Management of Meloidogyne incognita by using potassium humate in Brinjal (Solanum melongena L). Ann Plant Prot Sci 27:383–385

    Google Scholar 

  • Kamel SM, Afifi MM, El-shoraky FS, El-Sawy MM (2014) Fulvic acid: a tool for controlling powdery and downy mildews in cucumber plants. Int J Phytopathol 3:101–108

    Google Scholar 

  • Khaleda L, Park HJ, Yun D-J, Jeon J-R, Kim MG, Cha J-Y, Kim W-Y (2017) Humic acid confers high-affinity K+ transporter 1-mediated salinity stress tolerance in Arabidopsis. Mol Cells 40:966

  • Khan KY, Ali B, Cui X, Feng Y, Stoffella PJ, Tang L, Yang X (2017) Effect of humic acid amendment on cadmium bioavailability and accumulation by pak choi (Brassica rapa ssp. chinensis L.) to alleviate dietary toxicity risk. Arch Agron Soil Sci 63:1431–1442

    CAS  Google Scholar 

  • Khan MA, Asaf S, Khan AL, Jan R, Kang S-M, Kim K-M, Lee I-J (2020) Extending thermotolerance to tomato seedlings by inoculation with SA1 isolate of Bacillus cereus and comparison with exogenous humic acid application. PLoS ONE 15:e0232228

    PubMed  PubMed Central  CAS  Google Scholar 

  • Khanna K, Jamwal VL, Sharma A, Gandhi SG, Ohri P, Bhardwaj R, Al-Huqail AA, Siddiqui MH, Ali HM, Ahmad P (2019) Supplementation with plant growth promoting rhizobacteria (PGPR) alleviates cadmium toxicity in Solanum lycopersicum by modulating the expression of secondary metabolites. Chemosphere 230:628–639

    PubMed  CAS  Google Scholar 

  • Kohli SK, Handa N, Bali S, Khanna K, Arora S, Sharma A, Bhardwaj R (2020) Current scenario of pb toxicity in plants: unraveling plethora of physiological responses. Rev Environ Contam Toxicol Springer Nature, Switzerland 249:153–297

  • Kolbert Z, Bartha B, Erdei L (2008) Exogenous auxin-induced NO synthesis is nitrate reductase-associated in Arabidopsis thaliana root primordia. J Plant Physiol 165:967–975

    PubMed  CAS  Google Scholar 

  • Lambers H, Plaxton WC (2015) Phosphorus: back to the roots. Annu Plant Rev 48:3–22

    Google Scholar 

  • Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528:60–68

    PubMed  CAS  Google Scholar 

  • Lewis DR, Negi S, Sukumar P, Muday GK (2011) Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development 138:3485–3495

    PubMed  CAS  Google Scholar 

  • Li Z, Liu C, Dong Y, Chang X, Nie X, Liu L, Xiao H, Lu Y, Zeng G (2017) Response of soil organic carbon and nitrogen stocks to soil erosion and land use types in the Loess hilly–gully region of China. Soil Tillage Res 166:1–9

    Google Scholar 

  • Li B, Zhu Q-H, Zhang Q, Zhu H-H, Huang D-Y, Su S-M, Wang Y-N, Zeng X-B (2021) Cadmium and arsenic availability in soil under submerged incubation: the influence of humic substances on iron speciation. Ecotoxicol Environ Saf 225:112773

    PubMed  CAS  Google Scholar 

  • Li B, Zhang T, Zhang Q, Zhu Q-H, Huang D-Y, Zhu H-H, Xu C, Su S-M, Zeng X-B (2022) Influence of straw-derived humic acid-like substance on the availability of Cd/As in paddy soil and their accumulation in rice grain. Chemosphere 300:134368

    PubMed  CAS  Google Scholar 

  • Li S, Huang X, Li G, Zhang K, Bai L, He H, Chen S, Dai J (2023) Effects of mineral-based potassium humate on cadmium accumulation in rice (Oryza sativa L.) under three levels of cadmium-contaminated alkaline soils. Sustainability 15:2836

    CAS  Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. Wiley, Hoboken

  • Liu W, Liu J, Rula S, Hou G (2014) Effect of humic acid water-soluble fertilizer on wheat photosynthetic characteristics and yield under water stress. Chin Agric Sci Bull 3:196–200

    Google Scholar 

  • Liu WC, Zheng SQ, Yu ZD, Gao X, Shen R, Lu YT (2018) WD 40-REPEAT 5a represses root meristem growth by suppressing auxin synthesis through changes of nitric oxide accumulation in Arabidopsis. Plant J 93:883–893

  • Loffredo E, Berloco M, Casulli F, Senesi N (2007) In vitro assessment of the inhibition of humic substances on the growth of two strains of Fusarium oxysporum. Biol Fertil Soils 43:759–769

  • Lohse G, Hedrich R (1992) Characterization of the plasma-membrane H+-ATPase from Vicia faba guard cells. Planta 188:206–214

    PubMed  CAS  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper D, Huston M, Raffaelli D, Schmid B (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808

    PubMed  CAS  Google Scholar 

  • Lotfi R, Gharavi-Kouchebagh P, Khoshvaghti H (2015) Biochemical and physiological responses of Brassica napus plants to humic acid under water stress. Russ J Plant Physiol 62:480–486

    CAS  Google Scholar 

  • Lotfi R, Kalaji H, Valizadeh G, Khalilvand Behrozyar E, Hemati A, Gharavi-Kochebagh P, Ghassemi A (2018) Effects of humic acid on photosynthetic efficiency of rapeseed plants growing under different watering conditions. Photosynthetica 56:962–970

    CAS  Google Scholar 

  • Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJ, Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature 382:445–448

    CAS  Google Scholar 

  • Lumactud RA, Gorim LY, Thilakarathna MS (2022) Impacts of humic-based products on the microbial community structure and functions toward sustainable agriculture. Front Sustain Food Syst 6:977121

  • Luo H-F, Zhang J-Y, Jia W-J, Ji F-M, Yan Q, Xu Q, Ke S, Ke J-S (2017) Analyzing the role of soil and rice cadmium pollution on human renal dysfunction by correlation and path analysis. Environ Sci Pollut Res 24:2047–2054

    CAS  Google Scholar 

  • Lv Z, Li X, Wang Y, Hu X, An J (2021) Responses of soil microbial community to combination pollution of galaxolide and cadmium. Environ Sci Pollut Res 28:56247–56256

    CAS  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068

    PubMed  CAS  Google Scholar 

  • Malik Z, Malik N, Noor I, Kamran M, Parveen A, Ali M, Sabir F, Elansary HO, El-Abedin TKZ, Mahmoud EA (2022) Combined effect of rice-straw biochar and humic acid on growth, antioxidative capacity, and Ion uptake in maize (Zea mays L.) grown under saline soil conditions. J Plant Growth Regul 42:3211–3228

  • Man-Hong Y, Lei Z, Sheng-Tao X, McLaughlin NB, Jing-Hui L (2020) Effect of water soluble humic acid applied to potato foliage on plant growth, photosynthesis characteristics and fresh tuber yield under different water deficits. Sci Rep 10:7854

    Google Scholar 

  • Marten I, Lohse G, Hedrich R (1991) Plant growth hormones control voltage-dependent activity of anion channels in plasma membrane of guard cells. Nature 353:758–762

    CAS  Google Scholar 

  • Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci USA 108:18512–18517

  • Matuszak-Slamani R, Bejger R, Włodarczyk M, Kulpa D, Sienkiewicz M, Gołębiowska D, Skórska E, Ukalska-Jaruga A (2022) Effect of humic acids on soybean seedling growth under polyethylene-glycol-6000-induced drought stress. Agronomy 12:1109

    CAS  Google Scholar 

  • Menezes-Blackburn D, Paredes C, Zhang H, Giles CD, Darch T, Stutter M, George TS, Shand C, Lumsdon D, Cooper P (2016) Organic acids regulation of chemical–microbial phosphorus transformations in soils. Environ Sci Technol 50:11521–11531

    PubMed  CAS  Google Scholar 

  • Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001) The ABI1 and ABI2 protein phosphatases 2 C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J 25:295–303

    PubMed  CAS  Google Scholar 

  • Minuto A, Spadaro D, Garibaldi A, Gullino ML (2006) Control of soilborne pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization. Crop Prot 25:468–475

    Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19

    PubMed  CAS  Google Scholar 

  • Mora V, Bacaicoa E, Zamarreno A-M, Aguirre E, Garnica M, Fuentes M, García-Mina J-M (2010) Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shoot distribution of cytokinins, polyamines and mineral nutrients. J Plant Physiol 167:633–642

    PubMed  CAS  Google Scholar 

  • Mora V, Baigorri R, Bacaicoa E, Zamarreno AM, García-Mina JM (2012) The humic acid-induced changes in the root concentration of nitric oxide, IAA and ethylene do not explain the changes in root architecture caused by humic acid in cucumber. Environ Exp Bot 76:24–32

    CAS  Google Scholar 

  • Mora V, Bacaicoa E, Baigorri R, Zamarreno AM, García-Mina JM (2014) NO and IAA key regulators in the shoot growth promoting action of humic acid in Cucumis sativus L. J Plant Growth Regul 33:430–439

    CAS  Google Scholar 

  • Morsomme P, Boutry M (2000) The plant plasma membrane H+-ATPase: structure, function and regulation. Biochim Biophys Acta -Biomembr 1465:1–16

    CAS  Google Scholar 

  • Muhammad I, Shalmani A, Ali M, Yang Q-H, Ahmad H, Li FB (2021) Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Front Plant Sci 11:615942

    PubMed  PubMed Central  Google Scholar 

  • Mukarram M, Choudhary S, Kurjak D, Petek A, Khan MMA (2021) Drought: sensing, signalling, effects and tolerance in higher plants. Physiol Plant 172:1291–1300

    PubMed  CAS  Google Scholar 

  • Muscolo A, Felici M, Concheri G, Nardi S (1993) Effect of humic substances on peroxidase and esterase patterns during growth of leaf explants of Nicotiana plumbaginifolia. Biol Fertil Soils 15:127–131

  • Muscolo A, Panuccio M, Abenavoli M, Concheri G, Nardi S (1996) Effect of molecular complexity and acidity of earthworm faeces humic fractions on glutamate dehydrogenase, glutamine synthetase, and phosphoenolpyruvate carboxylase in Daucus carota α II cells. Biol Fertil Soils 22:83–88

    CAS  Google Scholar 

  • Muscolo A, Cutrupi S, Nardi S (1998) IAA detection in humic substances. Soil Biol Biochem 30:1199–1202

    CAS  Google Scholar 

  • Muscolo A, Sidari M, Francioso O, Tugnoli V, Nardi S (2007) The auxin-like activity of humic substances is related to membrane interactions in carrot cell cultures. J Chem Ecol 33:115–129

    PubMed  CAS  Google Scholar 

  • Mustilli A-C, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nagachandrabose S (2018) Liquid bioformulations for the management of root-knot nematode, Meloidogyne hapla that infects carrot. Crop Prot 114:155–161

    CAS  Google Scholar 

  • Nagachandrabose S, Baidoo R (2021) Humic acid–a potential bioresource for nematode control. Nematology 24:1–10

    Google Scholar 

  • Nardi S, Concheri G, Dell’Agnola G, Scrimin P (1991) Nitrate uptake and ATPase activity in oat seedlings in the presence of two humic fractions. Soil Biol Biochem 23:833–836

    CAS  Google Scholar 

  • Nardi S, Reniero F, Concheri G (1997) Soil organic matter mobilization by root exudates of three maize hybrids. Chemosphere 35:2237–2244

    CAS  Google Scholar 

  • Nardi S, Concheri G, Pizzeghello D, Sturaro A, Rella R, Parvoli G (2000) Soil organic matter mobilization by root exudates. Chemosphere 41:653–658

    PubMed  CAS  Google Scholar 

  • Nardi S, Muscolo A, Vaccaro S, Baiano S, Spaccini R, Piccolo A (2007) Relationship between molecular characteristics of soil humic fractions and glycolytic pathway and krebs cycle in maize seedlings. Soil Biol Biochem 39:3138–3146

    CAS  Google Scholar 

  • Nardi S, Carletti P, Pizzeghello D, Muscolo A (2009) Biological activities of humic substances. Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. John Wiley and Sons, Inc, New Jersey 2(1):305–339

  • Nardi S, Ertani A, Francioso O (2017) Soil–root cross-talking: the role of humic substances. J Plant Nutr Soil Sci 180:5–13

    CAS  Google Scholar 

  • Nardi S, Pizzeghello D, Ertani A (2018) Hormone-like activity of the soil organic matter. Appl Soil Ecol 123:517–520

    Google Scholar 

  • Nardi S, Schiavon M, Francioso O (2021) Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules 26:2256

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nearing M, Pruski F, O’neal M (2004) Expected climate change impacts on soil erosion rates: a review. J Soil Water Conserv 59:43–50

    Google Scholar 

  • Nicholson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30:369–389

    CAS  Google Scholar 

  • Nunes RO, Domiciano GA, Alves WS, Melo ACA, Nogueira FCS, Canellas LP, Olivares FL, Zingali RB, Soares MR (2019) Evaluation of the effects of humic acids on maize root architecture by label-free proteomics analysis. Sci Rep 9:12019

    CAS  Google Scholar 

  • Olaetxea M, Mora V, Bacaicoa E, Garnica M, Fuentes M, Casanova E, Zamarreño AM, Iriarte JC, Etayo D, Ederra I (2015) Abscisic acid regulation of root hydraulic conductivity and aquaporin gene expression is crucial to the plant shoot growth enhancement caused by rhizosphere humic acids. Plant Physiol 169:2587–2596

    PubMed  PubMed Central  CAS  Google Scholar 

  • Olaetxea M, De Hita D, Garcia CA, Fuentes M, Baigorri R, Mora V, Garnica M, Urrutia O, Erro J, Zamarreño AM (2018) Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root-and shoot-growth. Appl Soil Ecol 123:521–537

    Google Scholar 

  • Olaetxea M, Mora V, Bacaicoa E, Baigorri R, Garnica M, Fuentes M, Zamarreño AM, Spíchal L, García-Mina JM (2019) Root ABA and H+‐ATPase are key players in the root and shoot growth‐promoting action of humic acids. Plant Direct 3:e00175

    PubMed  PubMed Central  CAS  Google Scholar 

  • Olivares FL, Busato JG, de Paula AM, da Silva Lima L, Aguiar NO, Canellas LP (2017) Plant growth promoting bacteria and humic substances: crop promotion and mechanisms of action. Chem Biol Technol Agric 4:1–13

    Google Scholar 

  • Osman M, El-Feky S, Elshahawy M, Shaker E (2017) Efficiency of flax (Linum usitatissimum L.) as a phytoremediator plant for the contaminated soils with heavy metals. Int J Agric Environ Res 3:3577–3600

    Google Scholar 

  • Overvoorde P, Fukaki H, Beeckman T (2010) Auxin control of root development. Cold Spring Harb Perspect Biol 2:a001537

    PubMed  PubMed Central  Google Scholar 

  • Park S-Y, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow T-FF (2009) Abscisic acid inhibits type 2 C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pascual J, Garcia C, Hernandez T, Lerma S, Lynch J (2002) Effectiveness of municipal waste compost and its humic fraction in suppressing Pythium ultimum. Microb Ecol 44:59–68

  • Piccolo A (2001) The supramolecular structure of humic substances. Soil Sci 166:810–832

    CAS  Google Scholar 

  • Pinton R, Cesco S, Iacolettig G, Astolfi S, Varanini Z (1999) Modulation of NO3 uptake by water-extractable humic substances: involvement of root plasma membrane H+ ATPase. Plant Soil 215:155–161

    CAS  Google Scholar 

  • Pizzeghello D, Schiavon M, Francioso O, Dalla Vecchia F, Ertani A, Nardi S (2020) Bioactivity of size-fractionated and unfractionated humic substances from two forest soils and comparative effects on N and S metabolism, nutrition, and root anatomy of Allium sativum L. Front Plant Sci 11:1203

    PubMed  PubMed Central  Google Scholar 

  • Pryor S, Barthelmie R, Schoof J (2013) High-resolution projections of climate-related risks for the midwestern USA. Clim Res 56:61–79

    Google Scholar 

  • Puglisi E, Fragoulis G, Ricciuti P, Cappa F, Spaccini R, Piccolo A, Trevisan M, Crecchio C (2009) Effects of a humic acid and its size-fractions on the bacterial community of soil rhizosphere under maize (Zea mays L). Chemosphere 77:829–837

    PubMed  CAS  Google Scholar 

  • Pukalchik M, Kydralieva K, Yakimenko O, Fedoseeva E, Terekhova V (2019) Outlining the potential role of humic products in modifying biological properties of the soil—a review. Front Environ Sci 7:80

    Google Scholar 

  • Qin K, Leskovar DI (2020) Humic substances improve vegetable seedling quality and post-transplant yield performance under stress conditions. Agriculture 10:254

    CAS  Google Scholar 

  • Qu Z, Qi X, Liu Y, Liu K, Li C (2020) Interactive effect of irrigation and polymer-coated potassium chloride on tomato production in a greenhouse. Agric Water Manag 235:106149

    Google Scholar 

  • Quaggiotti S, Ruperti B, Pizzeghello D, Francioso O, Tugnoli V, Nardi S (2004) Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L). J Exp Bot 55:803–813

    PubMed  CAS  Google Scholar 

  • Raghothama K, Karthikeyan A (2005) Phosphate acquisition. Plant Soil 274:37–49

    CAS  Google Scholar 

  • Ramos AC, Dobbss LB, Santos LA, Fernandes MS, Olivares FL, Aguiar NO, Canellas LP (2015) Humic matter elicits proton and calcium fluxes and signaling dependent on Ca2+-dependent protein kinase (CDPK) at early stages of lateral plant root development. Chem Biolo Technol Agric 2:1–12

    Google Scholar 

  • Rashid I, Murtaza G, Dar AA, Wang Z (2020) The influence of humic and fulvic acids on cd bioavailability to wheat cultivars grown on sewage irrigated Cd-contaminated soils. Ecotoxicol Environ Saf 205:111347

    PubMed  CAS  Google Scholar 

  • Rathor PK (2021) Brown algal genes impart salinity and high temperature stress tolerance in Arabidopsis thaliana. In faculty of graduate studies online theses. Dalhousie University. Available via https://dalspace.library.dal.ca/handle/10222/80549. Accessed 21 Feb 2023

  • Rathor P, Borza T, Liu Y, Qin Y, Stone S, Zhang J, Hui JP, Berrue F, Groisillier A, Tonon T (2020) Low mannitol concentrations in Arabidopsis thaliana expressing Ectocarpus genes improve salt tolerance. Plants 9:1508

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rathor P, Borza T, Stone S, Tonon T, Yurgel S, Potin P, Prithiviraj B (2021) A novel protein from Ectocarpus sp. improves salinity and high temperature stress tolerance in Arabidopsis thaliana. Int J Mol Sci 22:1971

  • Rathor P, Borza T, Bahmani R, Stone S, Tonon T, Yurgel S, Potin P, Prithiviraj B (2023) Expression of a heat shock protein 70 from the brown alga Ectocarpus sp. imparts salinity stress tolerance in Arabidopsis thaliana. J Appl Phycol 35:803–819

  • Raza A (2022) Metabolomics: a systems biology approach for enhancing heat stress tolerance in plants. Plant Cell Rep 41:741–763

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8:34

    PubMed  PubMed Central  CAS  Google Scholar 

  • Raza A, Tabassum J, Kudapa H, Varshney RK (2021) Can omics deliver temperature resilient ready-to-grow crops? Crit Rev Biotechnol 41:1209–1232

    PubMed  Google Scholar 

  • Raza A, Tabassum J, Fakhar AZ, Sharif R, Chen H, Zhang C, Ju L, Fotopoulos V, Siddique KH, Singh RK (2022) Smart reprograming of plants against salinity stress using modern biotechnological tools. Crit Rev Biotechnol 128:2093695

  • Raza A, Mubarik MS, Sharif R, Habib M, Jabeen W, Zhang C, Chen H, Chen ZH, Siddique KH, Zhuang W (2023) Developing drought-smart, ready‐to‐grow future crops. Plant Genome 16:e20279

    PubMed  Google Scholar 

  • Regulation E (2019) Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending regulations (EC) no 1069/2009 and (EC) no 1107/2009 and repealing regulation (EC) no 2003/2003 (text with EEA relevance). OJ L 170/1, 25.6. 2019. J Eur Union 62:1–132

    Google Scholar 

  • Ritchie JD, Perdue EM (2008) Analytical constraints on acidic functional groups in humic substances. Org Geochem 39:783–799

    CAS  Google Scholar 

  • Roomi S, Masi A, Conselvan GB, Trevisan S, Quaggiotti S, Pivato M, Arrigoni G, Yasmin T, Carletti P (2018) Protein profiling of Arabidopsis roots treated with humic substances: insights into the metabolic and interactome networks. Front Plant Sci 9:1812

  • Rose MT, Patti AF, Little KR, Brown AL, Jackson WR, Cavagnaro TR (2014) A meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. Adv Agron 124:37–89

    CAS  Google Scholar 

  • Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Boote KJ, Folberth C, Glotter M, Khabarov N (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci USA 111:3268–3273

    PubMed  CAS  Google Scholar 

  • Rubio V, Bustos R, Irigoyen ML, Cardona-López X, Rojas-Triana M, Paz-Ares J (2009) Plant hormones and nutrient signaling. Plant Mol Biol 69:361–373

    PubMed  CAS  Google Scholar 

  • Russell L, Stokes AR, Macdonald H, Muscolo A, Nardi S (2006) Stomatal responses to humic substances and auxin are sensitive to inhibitors of phospholipase A2. Plant Soil 283:175–185

    CAS  Google Scholar 

  • Saeedizadeh A, Niasti F, Baghaei MA, Hasanpour S, Agahi K (2020) Effects of fertilizers on development of root-knot nematode, Meloidogyne javanica. Int J Agri Biol 23(2):1306

  • Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449

    PubMed  CAS  Google Scholar 

  • Sakakibara H (2021) Cytokinin biosynthesis and transport for systemic nitrogen signaling. Plant J 105:421–430

    PubMed  CAS  Google Scholar 

  • Sato S, Kamiyama M, Iwata T, Makita N, Furukawa H, Ikeda H (2006) Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Ann Bot 97:731–738

    PubMed  PubMed Central  CAS  Google Scholar 

  • Savy D, Canellas L, Vinci G, Cozzolino V, Piccolo A (2017) Humic-like water-soluble lignins from giant reed (Arundo donax L.) display hormone-like activity on plant growth. J Plant Growth Regul 36:995–1001

    CAS  Google Scholar 

  • Scaglia B, Nunes RR, Rezende MOO, Tambone F, Adani F (2016) Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost. Sci Total Environ 562:289–295

    PubMed  CAS  Google Scholar 

  • Schiavon M, Pizzeghello D, Muscolo A, Vaccaro S, Francioso O, Nardi S (2010) High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L). J Chem Ecol 36:662–669

    PubMed  CAS  Google Scholar 

  • Schmidt W, Santi S, Pinton R, Varanini Z (2007) Water-extractable humic substances alter root development and epidermal cell pattern in Arabidopsis. Plant Soil 300:259–267

  • Schnitzer M, Monreal CM (2011) Quo vadis soil organic matter research? A biological link to the chemistry of humification. Adv Agron 113:143–217

    Google Scholar 

  • Schweighofer A, Hirt H, Meskiene I (2004) Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci 9:236–243

    PubMed  CAS  Google Scholar 

  • Seenivasan N, Senthilnathan S (2018) Effect of humic acid on Meloidogyne incognita (Kofoid & White) Chitwood infecting banana (Musa spp). Int J Pest Manage 64:110–118

    CAS  Google Scholar 

  • Seenivasan N, Manoranjitham S, Auxilia J, Soorianathasundaram K (2013) Management of nematodes in banana through bio-rationale approaches. Pest Manage Hortic Ecsyst 19:38–44

    Google Scholar 

  • Selvaraj S, Ganeshamoorthi P, Anand T, Raguchander T, Seenivasan N, Samiyappan R (2014) Evaluation of a liquid formulation of Pseudomonas fluorescens against Fusarium oxysporum f. sp. cubense and Helicotylenchus multicinctus in banana plantation. Biocontrol 59:345–355

    Google Scholar 

  • Shen B, Wang X, Zhang Y, Zhang M, Wang K, Xie P, Ji H (2020a) The optimum pH and eh for simultaneously minimizing bioavailable cadmium and arsenic contents in soils under the organic fertilizer application. Sci Total Environ 711:135229

    PubMed  CAS  Google Scholar 

  • Shen J, Guo M, Wang Y, Yuan X, Dong S, Song X-e, Guo P (2020b) An investigation into the beneficial effects and molecular mechanisms of humic acid on foxtail millet under drought conditions. PLoS ONE 15:e0234029

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shen J, Guo M-j, Wang Y-g, Yuan X-y, Wen Y-y Song X-e, Dong S-q, Guo P-y (2020c) humic acid improves the physiological and photosynthetic characteristics of millet seedlings under drought stress. Plant Signal Behav 15:1774212

  • Siddiqui Y, Meon S, Ismail R, Rahmani M, Ali A (2009) In vitro fungicidal activity of humic acid fraction from oil palm compost. Int J Agric Biol 11:448–452

    CAS  Google Scholar 

  • Singh R, Tripathi R, Dwivedi S, Kumar A, Trivedi P, Chakrabarty D (2010) Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol 101:3025–3032

    PubMed  CAS  Google Scholar 

  • Singh S, Kumar V, Anil AG, Romero R, Ramamurthy PC, Singh J (2022) Biodegradation of phorate by bacterial strains in the presence of humic acid and metal ions. J Basic Microbiol 62:498–507

    PubMed  CAS  Google Scholar 

  • Song H, Yao P, Zhang S, Jia H, Yang Y, Liu L (2023) A non-specific lipid transfer protein, NtLTPI. 38, positively mediates heat tolerance by regulating photosynthetic ability and antioxidant capacity in tobacco. Plant Physiol Biochem 200:107791

  • Soon F-F, Ng L-M, Zhou XE, West GM, Kovach A, Tan ME, Suino-Powell KM, He Y, Xu Y, Chalmers MJ (2012) Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science 335:85–88

    PubMed  CAS  Google Scholar 

  • Souza AC, Zandonadi DB, Santos MP, Canellas NOA, de Paula Soares C, da Silva Irineu LES, de Rezende CE, Spaccini R, Piccolo A, Olivares FL (2021) Acclimation with humic acids enhances maize and tomato tolerance to salinity. Chem Biol Technol Agric 8:1–13

    Google Scholar 

  • Souza AC, Olivares FL, Peres LEP, Piccolo A, Canellas LP (2022) Plant hormone crosstalk mediated by humic acids. Chem Biol Technol Agric 9:1–25

    Google Scholar 

  • Spaccini R, Cozzolino V, Di Meo V, Savy D, Drosos M, Piccolo A (2019) Bioactivity of humic substances and water extracts from compost made by ligno-cellulose wastes from biorefinery. Sci Total Environ 646:792–800

    PubMed  CAS  Google Scholar 

  • Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie D-Y, Doležal K, Schlereth A, Jürgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191

    PubMed  CAS  Google Scholar 

  • Stepanova AN, Yun J, Robles LM, Novak O, He W, Guo H, Ljung K, Alonso JM (2011) The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. Plant Cell 23:3961–3973

    PubMed  PubMed Central  CAS  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions. Wiley, Hoboken

  • Stöhr C, Stremlau S (2006) Formation and possible roles of nitric oxide in plant roots. J Exp Bot 57:463–470

    PubMed  Google Scholar 

  • Sun J, Qiu C, Qian W, Wang Y, Sun L, Li Y, Ding Z (2019) Ammonium triggered the response mechanism of lysine crotonylome in tea plants. BMC Genom 20(1): 1–14

    Google Scholar 

  • Tahir M, Khurshid M, Khan M, Abbasi M, Kazmi M (2011) Lignite-derived humic acid effect on growth of wheat plants in different soils. Pedosphere 21:124–131

    CAS  Google Scholar 

  • Tahiri A, Delporte F, Muhovski Y, Ongena M, Thonart P, Druart P (2016) Change in ATP-binding cassette B1/19, glutamine synthetase and alcohol dehydrogenase gene expression during root elongation in Betula pendula Roth and Alnus glutinosa L. Gaertn in response to leachate and leonardite humic substances. Plant Physiol Biochem 98:25–38

  • Terrile MC, París R, Calderón-Villalobos LI, Iglesias MJ, Lamattina L, Estelle M, Casalongué CA (2012) Nitric oxide influences auxin signaling through S‐nitrosylation of the Arabidopsis transport inhibitor response 1 auxin receptor. Plant J 70:492–500

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ticconi CA, Delatorre CA, Lahner B, Salt DE, Abel S (2004) Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development. Plant J 37:801–814

    PubMed  CAS  Google Scholar 

  • Tomasi N, De Nobili M, Gottardi S, Zanin L, Mimmo T, Varanini Z, Römheld V, Pinton R, Cesco S (2013) Physiological and molecular characterization of Fe acquisition by tomato plants from natural Fe complexes. Biol Fertil Soils 49:187–200

    CAS  Google Scholar 

  • Trevisan S, Francioso O, Quaggiotti S, Nardi S (2010) Humic substances biological activity at the plant-soil interface: from environmental aspects to molecular factors. Plant Signal Behav 5:635–643

    PubMed  PubMed Central  CAS  Google Scholar 

  • Trevisan S, Botton A, Vaccaro S, Vezzaro A, Quaggiotti S, Nardi S (2011) Humic substances affect Arabidopsis physiology by altering the expression of genes involved in primary metabolism, growth and development. Environ Exp Bot 74:45–55

    CAS  Google Scholar 

  • Trewavas A, Read N, Campbell AK, Knight M (1996) Transduction of Ca2+ signals in plant cells and compartmentalization of the Ca2+ signal. Biochem Soc Trans 24:971–974

    PubMed  CAS  Google Scholar 

  • Ubersax JA, Ferrell JE Jr (2007) Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8:530–541

    PubMed  CAS  Google Scholar 

  • United N (2019) World population prospects 2019: the 2019 revision. Department of economic and social affairs population division; New York. available via https://population.un.org/wpp/. Accessed 14 Jan 2023

  • Urrutia O, Fuentes M, Olaetxea M, Garnica M, Baigorri R, Movila M, De Hita D, Garcia-Mina J (2020) The effect of soil organic matter on plant mineral nutrition. Achieving Sustainable Crop Nutrition. Burleigh Dodds Science Publishing, Cambridge

  • Vaccaro S, Muscolo A, Pizzeghello D, Spaccini R, Piccolo A, Nardi S (2009) Effect of a compost and its water-soluble fractions on key enzymes of nitrogen metabolism in maize seedlings. J Agric Food Chem 57:11267–11276

    PubMed  CAS  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    PubMed  CAS  Google Scholar 

  • Varanini Z, Pinton R, De Biasi M, Astolfi S, Maggioni A (1993) Low molecular weight humic substances stimulate H+-ATPase activity of plasma membrane vesicles isolated from oat (Avena sativa L.) roots. Plant Soil 153:61–69

    CAS  Google Scholar 

  • Vaughan D, Malcolm R (1985) Influence of humic substances on growth and physiological processes. Soil Organic Matter and Biological Activity. Springer, Berlin

  • Vujinović T, Zanin L, Venuti S, Contin M, Ceccon P, Tomasi N, Pinton R, Cesco S, De Nobili M (2020) Biostimulant action of dissolved humic substances from a conventionally and an organically managed soil on nitrate acquisition in maize plants. Front Plant Sci 10:1652

    PubMed  PubMed Central  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Google Scholar 

  • Wan W, Liu Z, Li K, Wang G, Wu H, Wang Q (2021) Drought monitoring of the maize planting areas in Northeast and North China Plain. Agric Water Manag 245:106636

    Google Scholar 

  • Wang Y, Lambers H (2020) Root-released organic anions in response to low phosphorus availability: recent progress, challenges and future perspectives. Plant Soil 447:135–156

    CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    PubMed  CAS  Google Scholar 

  • Wang C-F, Fan X, Zhang F, Wang S-Z, Zhao Y-P, Zhao X-Y, Zhao W, Zhu T-G, Lu J-L, Wei X-Y (2017) Characterization of humic acids extracted from a lignite and interpretation for the mass spectra. RSC Adv 7:20677–20684

    CAS  Google Scholar 

  • Wang NQ, Kong CH, Wang P, Meiners SJ (2021a) Root exudate signals in plant–plant interactions. Plant Cell Environ 44:1044–1058

    PubMed  CAS  Google Scholar 

  • Wang Y, Chen YF, Wu WH (2021b) Potassium and phosphorus transport and signaling in plants. J Integr Plant Biol 63:34–52

    PubMed  CAS  Google Scholar 

  • Weber J, Chen Y, Jamroz E, Miano T (2018) Preface: humic substances in the environment. J Soils Sediments 18:2665–2667

    Google Scholar 

  • Wei S, Li G, Li P, Qiu C, Jiang C, Liu M, Wu M, Li Z (2021) Molecular level changes during suppression of Rhizoctonia solani growth by humic substances and relationships with chemical structure. Ecotoxicol Environ Saf 209:111749

    PubMed  CAS  Google Scholar 

  • Won C, Shen X, Mashiguchi K, Zheng Z, Dai X, Cheng Y, Kasahara H, Kamiya Y, Chory J, Zhao Y (2011) Conversion of tryptophan to indole-3-acetic acid by tryptophan aminotransferases of Arabidopsis and YUCCAs in Arabidopsis. Proc Natl Acad Sci USA 108:18518–18523

  • Wu M, Song M, Liu M, Jiang C, Li Z (2016) Fungicidal activities of soil humic/fulvic acids as related to their chemical structures in greenhouse vegetable fields with cultivation chronosequence. Sci Rep 6:32858

    Google Scholar 

  • Wu W, Du K, Kang X, Wei H (2021) The diverse roles of cytokinins in regulating leaf development. Hortic Res 8:00558-3

  • Xu W, Shi W, Jia L, Liang J, Zhang J (2012) TFT6 and TFT7, two different members of tomato 14-3‐3 gene family, play distinct roles in plant adaption to low phosphorus stress. Plant Cell Environ 35:1393–1406

  • Xu Q, Duan D, Cai Q, Shi J (2018) Influence of humic acid on pb uptake and accumulation in tea plants. J Agric Food Chem 66:12327–12334

    PubMed  CAS  Google Scholar 

  • Xu D, Deng Y, Xi P, Yu G, Wang Q, Zeng Q, Jiang Z, Gao L (2019) Fulvic acid-induced disease resistance to Botrytis cinerea in table grapes may be mediated by regulating phenylpropanoid metabolism. Food Chem 286:226–233

    PubMed  CAS  Google Scholar 

  • Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH (2017) Biostimulants in plant science: a global perspective. Front Plant Sci 7:2049

  • Yan L, Zhang X, Han Z, Pang J, Lambers H, Finnegan PM (2019) Responses of foliar phosphorus fractions to soil age are diverse along a 2 Myr dune chronosequence. New Phytol 223:1621–1633

    PubMed  CAS  Google Scholar 

  • Yass ST, Aish AA, Al-Sandooq DL, Mostafa MM (2020) Activity of humic acid against root knot nematodes on tomato. Plant Arch 20:1–3

    Google Scholar 

  • Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K (2006) The regulatory domain of SRK2E/OST1/SnRK2. 6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem 281:5310–5318

  • You L, Rosegrant MW, Wood S, Sun D (2009) Impact of growing season temperature on wheat productivity in China. Agric For Meteorol 149:1009–1014

    Google Scholar 

  • Zandonadi DB, Canellas LP, Façanha AR (2007) Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta 225:1583–1595

    PubMed  CAS  Google Scholar 

  • Zandonadi DB, Santos MP, Dobbss LB, Olivares FL, Canellas LP, Binzel ML, Okorokova-Façanha AL, Façanha AR (2010) Nitric oxide mediates humic acids-induced root development and plasma membrane H+-ATPase activation. Planta 231:1025–1036

    PubMed  CAS  Google Scholar 

  • Zandonadi DB, Santos MP, Caixeta LS, Marinho EB, Peres LEP, Façanha AR (2016) Plant proton pumps as markers of biostimulant action. Sci Agric 73:24–28

    CAS  Google Scholar 

  • Zanin L, Tomasi N, Rizzardo C, Gottardi S, Terzano R, Alfeld M, Janssens K, De Nobili M, Mimmo T, Cesco S (2015) Iron allocation in leaves of Fe-deficient cucumber plants fed with natural Fe complexes. Physiol Plant 154:82–94

    PubMed  CAS  Google Scholar 

  • Zanin L, Tomasi N, Zamboni A, Sega D, Varanini Z, Pinton R (2018) Water-extractable humic substances speed up transcriptional response of maize roots to nitrate. Environ Exp Bot 147:167–178

    CAS  Google Scholar 

  • Zanin L, Tomasi N, Cesco S, Varanini Z, Pinton R (2019) Humic substances contribute to plant iron nutrition acting as chelators and biostimulants. Front Plant Sci 10:675

    PubMed  PubMed Central  Google Scholar 

  • Zhang T, Zhao YL, Zhao JH, Wang S, Jin Y, Chen ZQ, Fang YY, Hua CL, Ding SW, Guo HS (2016) Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat Plants 2:1–6

    Google Scholar 

  • Zhang DR, Chen HR, Xia JL, Nie ZY, Fan XL, Liu HC, Zheng L, Zhang LJ, Yang HY (2020) Humic acid promotes arsenopyrite bio-oxidation and arsenic immobilization. J Hazard Mater 384:121359

    PubMed  CAS  Google Scholar 

  • Zhao Y, Shi Y, Wang Z, Qian G (2023) Enhancement of humic acid on plant growth in a Cd-contaminated matrix: performance, kinetics, and mechanism. Environ Sci Pollut Res 30:5677–5687

    CAS  Google Scholar 

  • Zheng K, Li H, Xu L, Li S, Wang L, Wen X, Liu Q (2019) The influence of humic acids on the weathering of pyrite: electrochemical mechanism and environmental implications. Environ Pollut 251:738–745

    PubMed  CAS  Google Scholar 

  • Zhou H, Meng H, Zhao L, Shen Y, Hou Y, Cheng H, Song L (2018) Effect of biochar and humic acid on the copper, lead, and cadmium passivation during composting. Bioresour Technol 258:279–286

    PubMed  CAS  Google Scholar 

  • Zhu J-K (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zia-ur-Rehman M, Mfarrej MFB, Usman M, Azhar M, Rizwan M, Alharby HF, Bamagoos AA, Alshamrani R, Ahmad Z (2023) Exogenous application of low and high molecular weight organic acids differentially affected the uptake of cadmium in wheat-rice cropping system in alkaline calcareous soil. Environ Pollut 329:121682

    PubMed  CAS  Google Scholar 

  • Zubo YO, Schaller GE (2020) Role of the cytokinin-activated type-B response regulators in hormone crosstalk. Plants 9:166

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zulfiqar U, Farooq M, Hussain S, Maqsood M, Hussain M, Ishfaq M, Ahmad M, Anjum MZ (2019) Lead toxicity in plants: impacts and remediation. J Environ Manage 250:109557

    PubMed  CAS  Google Scholar 

  • Zwack PJ, Rashotte AM (2015) Interactions between cytokinin signalling and abiotic stress responses. J Exp Bot 66:4863–4871

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Nina Mori (Department of Agricultural, Food and Nutritional Science, University of Alberta) for editorial assistance and Michele Tran for creating the graph in Fig. 2.

Funding

The research was supported by Natural Sciences and Engineering Research Council (NSERC – Alliance grant #ALLRP 566714–21), Mitacs Accelerate (IT-27030), and Prairie Mines & Royalty ULC.

Author information

Authors and Affiliations

Authors

Contributions

Pramod Rathor: Conceptualization, Writing – Original draft preparation and Editing.

Linda Gorim: Conceptualization, Writing - Reviewing and Editing.

Malinda Thilakarathna: Supervision, Conceptualization, Writing - Reviewing and Editing.

Corresponding author

Correspondence to Malinda S. Thilakarathna.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Responsible Editor: M. Iqbal R. Khan.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathor, P., Gorim, L.Y. & Thilakarathna, M.S. Plant physiological and molecular responses triggered by humic based biostimulants - A way forward to sustainable agriculture. Plant Soil 492, 31–60 (2023). https://doi.org/10.1007/s11104-023-06156-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-023-06156-7

Keywords

Navigation