[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Lauroylated Histidine-Enriched S413-PV Peptide as an Efficient Gene Silencing Mediator in Cancer Cells

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to endow the cell-penetrating peptide (CPP) S413-PV with adequate features towards a safe and effective application in cancer gene therapy.

Methods

Peptide/siRNA complexes were prepared with two new derivatives of the CPP S413-PV, which combine a lauroyl group attached to the N- or C-terminus with a histidine-enrichment in the N-terminus of the S413-PV peptide, being named C12-H5-S413-PV and H5-S413-PV-C12, respectively. Physicochemical characterization of siRNA complexes was performed and their cytotoxicity and efficiency to mediate siRNA delivery and gene silencing in cancer cells were assessed in the absence and presence of serum.

Results

Peptide/siRNA complexes prepared with the C12-H5-S413-PV derivative showed a nanoscale (ca. 100 nm) particle size, as revealed by TEM, and efficiently mediated gene silencing (37%) in human U87 glioblastoma cells in the presence of 30% serum. In addition, the new C12-H5-S413-PV-based siRNA delivery system efficiently downregulated stearoyl-CoA desaturase-1, a key-enzyme of lipid metabolism overexpressed in cancer, which resulted in a significant decrease in the viability of U87 cells. Importantly, these complexes were able to spare healthy human astrocytes.

Conclusions

These encouraging results pave the way for a potential application of the C12-H5-S413-PV peptide as a promising tool in cancer gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tatiparti K, Sau S, Kashaw SK, Iyer AK. siRNA delivery strategies: a comprehensive review of recent developments. Nanomaterials (Basel). 2017;7(4):77.

    Google Scholar 

  2. Kang Z, Meng Q, Liu K. Peptide-based gene delivery vectors. J Mater Chem B. 2019;7(11):1824–41.

    CAS  PubMed  Google Scholar 

  3. McClorey G, Banerjee S. Cell-penetrating peptides to enhance delivery of oligonucleotide-based therapeutics. Biomedicines. 2018;6(2):51.

    Google Scholar 

  4. Trabulo S, Cardoso AL, Cardoso AM, Morais CM, Jurado AS. Pedroso de Lima MC. Cell-penetrating peptides as nucleic acid delivery systems: from biophysics to biological applications. Curr Pharm Des. 2013;19(16):2895–923.

    CAS  PubMed  Google Scholar 

  5. Srimanee A, Arvanitidou M, Kim K, Hällbrink M, Langel Ü. Cell-penetrating peptides for siRNA delivery to glioblastomas. Peptides. 2018;104:62–9.

    CAS  PubMed  Google Scholar 

  6. Pärnaste L, Arukuusk P, Langel K, Tenson T, Langel Ü. The formation of nanoparticles between small interfering RNA and amphipathic cell-penetrating peptides. Mol Ther Nucleic Acids. 2017;7:1–10.

    PubMed  Google Scholar 

  7. Kurrikoff K, Freimann K, Veiman K-L, Peets EM, Piirsoo A, Langel Ü. Effective lung-targeted RNAi in mice with peptide-based delivery of nucleic acid. Sci Rep. 2019;9(1):19926.

    CAS  PubMed  Google Scholar 

  8. Konate K, Lindberg MF, Vaissiere A, Jourdan C, Aldrian G, Margeat E, et al. Optimisation of vectorisation property: a comparative study for a secondary amphipathic peptide. Int J Pharm. 2016;509(1):71–84.

    CAS  PubMed  Google Scholar 

  9. Aldrian G, Vaissière A, Konate K, Seisel Q, Vivès E, Fernandez F, et al. PEGylation rate influences peptide-based nanoparticles mediated siRNA delivery in vitro and in vivo. J Control Release. 2017;256:79–91.

    CAS  PubMed  Google Scholar 

  10. Vaissière A, Aldrian G, Konate K, Lindberg MF, Jourdan C, Telmar A, et al. A retro-inverso cell-penetrating peptide for siRNA delivery. J Nanobiotechnol. 2017;15(1):34.

    Google Scholar 

  11. Konate K, Dussot M, Aldrian G, Vaissière A, Viguier V, Neira IF, et al. Peptide-based nanoparticles to rapidly and efficiently “wrap ‘n roll” siRNA into cells. Bioconjug Chem. 2019;30(3):592–603.

    CAS  Google Scholar 

  12. Laroui N, Cubedo N, Rossel M, Bettache N. Improvement of cell penetrating peptide for efficient siRNA targeting of tumor xenografts in zebrafish embryos. Adv Ther. 2020;3(2):1900204.

    Google Scholar 

  13. Hariton-Gazal E, Feder R, Mor A, Graessmann A, Brack-Werner R, Jans D, et al. Targeting of nonkaryophilic cell-permeable peptides into the nuclei of intact cells by covalently attached nuclear localization signals. Biochemistry. 2002;41(29):9208–14.

    CAS  Google Scholar 

  14. Morais CM, Cardoso AM, Cunha PP, Aguiar L, Vale N, Lage E, et al. Acylation of the S413-PV cell-penetrating peptide as a means of enhancing its capacity to mediate nucleic acid delivery: relevance of peptide/lipid interactions. Biochim Biophys Acta Biomembr. 2018;1860(12):2619–34.

    CAS  Google Scholar 

  15. Margus H, Padari K, Pooga M. Cell-penetrating peptides as versatile vehicles for oligonucleotide delivery. Mol Ther. 2012;20(3):525–33.

    CAS  PubMed  Google Scholar 

  16. Konate K, Rydstrom A, Divita G, Deshayes S. Everything you always wanted to know about CADY-mediated siRNA delivery* (* but afraid to ask). Curr Pharm Des. 2013;19(16):2869–77.

    CAS  Google Scholar 

  17. Mano M, Teodosio C, Paiva A, Simoes S. Pedroso de Lima MC. On the mechanisms of the internalization of S4(13)-PV cell-penetrating peptide. Biochem J. 2005;390(Pt 2):603–12.

    CAS  PubMed  Google Scholar 

  18. Cardoso AM, Trabulo S, Cardoso AL, Maia S, Gomes P, Jurado AS. Pedroso de Lima MC. Comparison of the efficiency of complexes based on S4(13)-PV cell-penetrating peptides in plasmid DNA and siRNA delivery. Mol Pharm. 2013;10(7):2653–66.

    CAS  Google Scholar 

  19. Singh A, Trivedi P, Jain NK. Advances in siRNA delivery in cancer therapy. Artif Cells Nanomed Biotechnol. 2018;46(2):274–83.

    CAS  Google Scholar 

  20. Igal RA. Stearoyl CoA desaturase-1: New insights into a central regulator of cancer metabolism. Biochim Biophys Acta (BBA) – Mol Cell Biol Lipids. 2016;1861(12, Part A):1865–80.

    CAS  Google Scholar 

  21. Tracz-Gaszewska Z, Dobrzyn P. Stearoyl-CoA desaturase 1 as a therapeutic target for the treatment of cancer. Cancers (Basel). 2019;11(7):948.

    CAS  Google Scholar 

  22. Costa PM, Cardoso AL, Nobrega C, Pereira de Almeida LF, Bruce JN, Canoll P, et al. MicroRNA-21 silencing enhances the cytotoxic effect of the antiangiogenic drug sunitinib in glioblastoma. Hum Mol Genet. 2013;22(5):904–18.

    CAS  PubMed  Google Scholar 

  23. Simoes S, Slepushkin V, Gaspar R, de Lima MC, Duzgunes N. Gene delivery by negatively charged ternary complexes of DNA, cationic liposomes and transferrin or fusigenic peptides. Gene Ther. 1998;5(7):955–64.

    CAS  PubMed  Google Scholar 

  24. Farinha D. Pedroso de Lima MC, Faneca H. specific and efficient gene delivery mediated by an asialofetuin-associated nanosystem. Int J Pharm. 2014;473(1):366–74.

    CAS  PubMed  Google Scholar 

  25. Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc. 2006;1(3):1112–6.

    CAS  PubMed  Google Scholar 

  26. Morais CM, Cunha PP, Melo T, Cardoso AM, Domingues P, Domingues MR, et al. Glucosylceramide synthase silencing combined with the receptor tyrosine kinase inhibitor axitinib as a new multimodal strategy for glioblastoma. Hum Mol Genet. 2019;28(21):3664–79.

    CAS  PubMed  Google Scholar 

  27. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):45e.

    Google Scholar 

  28. Ezzat K, Andaloussi SE, Zaghloul EM, Lehto T, Lindberg S, Moreno PM, et al. PepFect 14, a novel cell-penetrating peptide for oligonucleotide delivery in solution and as solid formulation. Nucleic Acids Res. 2011;39(12):5284–98.

    CAS  PubMed  Google Scholar 

  29. Arukuusk P, Pärnaste L, Oskolkov N, Copolovici D-M, Margus H, Padari K, et al. New generation of efficient peptide-based vectors, NickFects, for the delivery of nucleic acids. Biochim Biophys Acta Biomembr. 2013;1828(5):1365–73.

    CAS  Google Scholar 

  30. Cardoso AMS, Sousa M, Morais CM, Oancea-Castillo LR, Régnier-Vigouroux A, Rebelo O, et al. MiR-144 overexpression as a promising therapeutic strategy to overcome glioblastoma cell invasiveness and resistance to chemotherapy. Hum Mol Genet. 2019;28(16):2738–51.

    CAS  PubMed  Google Scholar 

  31. Roongta UV, Pabalan JG, Wang X, Ryseck RP, Fargnoli J, Henley BJ, et al. Cancer cell dependence on unsaturated fatty acids implicates stearoyl-CoA desaturase as a target for cancer therapy. Mol Cancer Res. 2011;9(11):1551–61.

    CAS  PubMed  Google Scholar 

  32. Xue HY, Liu S, Wong HL. Nanotoxicity: a key obstacle to clinical translation of siRNA-based nanomedicine. Nanomedicine (London). 2014;9(2):295–312.

    CAS  Google Scholar 

  33. Xu C-f, Wang J. Delivery systems for siRNA drug development in cancer therapy. Asian J Pharm Sci. 2015;10(1):1–12.

    Google Scholar 

  34. Tros de Ilarduya C, Duzgunes N. Efficient gene transfer by transferrin lipoplexes in the presence of serum. Biochim Biophys Acta. 2000;1463(2):333–42.

    CAS  Google Scholar 

  35. Gooding M, Browne LP, Quinteiro FM, Selwood DL. siRNA delivery: from lipids to cell-penetrating peptides and their mimics. Chem Biol Drug Des. 2012;80(6):787–809.

    CAS  Google Scholar 

  36. Chernikov IV, Vlassov VV, Chernolovskaya EL. Current development of siRNA bioconjugates: from research to the clinic. Front Pharmacol. 2019;10:444.

    CAS  PubMed  Google Scholar 

  37. Hernandez-Garcia A, Álvarez Z, Simkin D, Madhan A, Pariset E, Tantakitti F, et al. Peptide–siRNA supramolecular particles for neural cell transfection. Adv Sci. 2019;6(3):1801458.

    Google Scholar 

  38. Egorova AA, Shtykalova SV, Maretina MA, Sokolov DI, Selkov SA, Baranov VS, et al. Synergistic anti-angiogenic effects using peptide-based combinatorial delivery of siRNAs targeting VEGFA, VEGFR1, and endoglin genes. Pharmaceutics. 2019;11(6):261.

    CAS  PubMed  Google Scholar 

  39. Jafari M, Xu W, Pan R, Sweeting CM, Karunaratne DN, Chen P. Serum stability and physicochemical characterization of a novel amphipathic peptide C6M1 for siRNA delivery. PLoS One. 2014;9(5):e97797.

    PubMed  Google Scholar 

  40. Youn P, Chen Y, Furgeson DY. A myristoylated cell-penetrating peptide bearing a transferrin receptor-targeting sequence for neuro-targeted siRNA delivery. Mol Pharm. 2014;11(2):486–95.

    CAS  PubMed  Google Scholar 

  41. Li W, Wang D, Shi X, Li J, Ma Y, Wang Y, et al. A siRNA-induced peptide co-assembly system as a peptide-based siRNA nanocarrier for cancer therapy. Mater Horiz. 2018;5(4):745–52.

    CAS  Google Scholar 

  42. Lindberg S, Muñoz-Alarcón A, Helmfors H, Mosqueira D, Gyllborg D, Tudoran O, et al. PepFect15, a novel endosomolytic cell-penetrating peptide for oligonucleotide delivery via scavenger receptors. Int J Pharm. 2013;441(1):242–7.

    CAS  PubMed  Google Scholar 

  43. Sharma M, El-Sayed NS, Do H, Parang K, Tiwari RK, Aliabadi HM. Tumor-targeted delivery of siRNA using fatty acyl-CGKRK peptide conjugates. Sci Rep. 2017;7(1):6093.

    PubMed  Google Scholar 

  44. Misra SK, Biswas J, Kondaiah P, Bhattacharya S. Gene transfection in high serum levels: case studies with new cholesterol based cationic gemini lipids. PLoS One. 2013;8(7):e68305.

    CAS  PubMed  Google Scholar 

  45. Hong CA, Nam YS. Functional nanostructures for effective delivery of small interfering RNA therapeutics. Theranostics. 2014;4(12):1211–32.

    PubMed  Google Scholar 

  46. Deshayes S, Konate K, Rydstrom A, Crombez L, Godefroy C, Milhiet PE, et al. Self-assembling peptide-based nanoparticles for siRNA delivery in primary cell lines. Small. 2012;8(14):2184–8.

    CAS  PubMed  Google Scholar 

  47. Pezzoli D, Giupponi E, Mantovani D, Candiani G. Size matters for in vitro gene delivery: investigating the relationships among complexation protocol, transfection medium, size and sedimentation. Sci Rep. 2017;7:44134.

    PubMed  Google Scholar 

  48. Nakamura T, Kuroi M, Fujiwara Y, Warashina S, Sato Y, Harashima H. Small-sized, stable lipid nanoparticle for the efficient delivery of siRNA to human immune cell lines. Sci Rep. 2016;6:37849.

    CAS  PubMed  Google Scholar 

  49. Pinkham K, Park DJ, Hashemiaghdam A, Kirov AB, Adam I, Rosiak K, et al. Stearoyl CoA desaturase is essential for regulation of endoplasmic reticulum homeostasis and tumor growth in glioblastoma cancer stem cells. Stem Cell Rep. 2019;12(4):712–27.

    CAS  Google Scholar 

  50. Dai S, Yan Y, Xu Z, Zeng S, Qian L, Huo L, et al. SCD1 confers temozolomide resistance to human glioma cells via the Akt/GSK3β/β-catenin signaling axis. Front Pharmacol. 2018;8:960.

    PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors would like to thank Dr. Henrique Girão, Director of the Laboratory for High-Resolution Cell Bio-imaging – University of Coimbra, which is part of the National Network of Electron Microscopy, for kindly providing us with all the required scientific and technical support to carry out the transmission electron microscopy and nanoparticle tracking analysis, and Prof. Graça Rasteiro (Department of Chemical Engineering of the Faculty of Science and Technology, University of Coimbra) for kindly making the Zeta sizer device available.

This work was supported by the European Regional Development Fund (ERDF), through the Centro 2020 Regional Operational Programme (project CENTRO-01-0145-FEDER-000008: BrainHealth 2020), and through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalisation and Portuguese national funds via FCT – Fundação para a Ciência e a Tecnologia (projects POCI-01-0145-FEDER-016390: CANCEL STEM and POCI-01-0145-FEDER-007440; UIDB/04539/2020).

Thanks are due to Fundação para a Ciência e Tecnologia (FCT, Portugal) for financial support to Research Units LAQV-REQUIMTE (UID/QUI/50006/2013) and UCIBIO-REQUIMTE (UID/MULTI/04378/2013), for IF position and project to NV (IF/00092/2014), for doctoral grants to CMM (SFRH/BD/79077/2011) and LA (PD/BD/106035/2015). Conflict of Interest none declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amália S. Jurado.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 4360 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morais, C.M., Cardoso, A.M., Aguiar, L. et al. Lauroylated Histidine-Enriched S413-PV Peptide as an Efficient Gene Silencing Mediator in Cancer Cells. Pharm Res 37, 188 (2020). https://doi.org/10.1007/s11095-020-02904-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02904-x

Key Words