ABSTRACT
Purpose
The aim of the present study was to evaluate the potential application of a novel formulation based on a synthesized cationic lipid 2,3-di(tetradecyloxy)propan-1-amine, combined with polysorbate 80 to deliver the pCMS-EGFP plasmid into the rat retina.
Methods
We elaborated lipoplexes by mixing the formulation containing the cationic lipid and the polysorbate 80 with the plasmid at different cationic lipid/DNA ratios (w/w). Resulted lipoplexes were characterized in terms of size, charge, and capacity to condense, protect and release the DNA. In vitro transfection studies were performed in HEK-293 and ARPE-19 cells. Formulations were also tested in vivo by monitoring the expression of the EGFP after intravitreal and subretinal injections in rat eyes.
Results
At 2/1 cationic lipid/DNA mass ratio, the resulted lipoplexes had 200 nm of hydrodynamic diameter; were positive charged, spherical, protected DNA against enzymatic digestion and transfected efficiently HEK-293 and ARPE-19 cultured cells exhibiting lower cytotoxicity than LipofectamineTM 2000. Subretinal administrations transfected mainly photoreceptors and retinal pigment epithelial cells; whereas intravitreal injections produced a more uniform distribution of transfection through the inner part of the retina.
Conclusions
These results hold great expectations for other gene delivery formulations based on this cationic lipid for retinal gene therapy purposes.
Similar content being viewed by others
REFERENCES
Lipinski DM, Thake M, Maclaren RE. Clinical applications of retinal gene therapy. Prog Retin Eye Res. 2012;32:22–47.
Charbel Issa P, MacLaren RE. Non-viral retinal gene therapy: a review. Clin Experiment Ophthalmol. 2012;40(1):39–47.
Liu MM, Tuo J, Chan CC. Gene therapy for ocular diseases. Br J Ophthalmol. 2011;95(5):604–12.
Bloquel C, Bourges JL, Touchard E, Berdugo M, BenEzra D, Behar-Cohen F. Non-viral ocular gene therapy: potential ocular therapeutic avenues. Adv Drug Deliv Rev. 2006;58(11):1224–42.
Naik R, Mukhopadhyay A, Ganguli M. Gene delivery to the retina: focus on non-viral approaches. Drug Discov Today. 2009;14(5–6):306–15.
Colella P, Auricchio A. Gene therapy of inherited retinopathies: a long and successful road from viral vectors to patients. Hum Gene Ther. 2012;23(8):796–807.
Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, et al. Effect of gene therapy on visual function in leber’s congenital amaurosis. N Engl J Med. 2008;358(21):2231–9.
Cideciyan AV, Aleman TS, Boye SL, Schwartz SB, Kaushal S, Roman AJ, et al. Human gene therapy for rpe65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci U S A. 2008;105(39):15112–7.
Maguire AM, Simonelli F, Pierce EA, Pugh Jr EN, Mingozzi F, Bennicelli J, et al. Safety and efficacy of gene transfer for leber’s congenital amaurosis. N Engl J Med. 2008;358(21):2240–8.
Mussolino C, del la Corte M, Rossi S, Viola F, Di Vicino U, Marrocco E, et al. Aav-mediated photoreceptor transduction of the pig cone-enriched retina. Gene Ther. 2011;18(7):637–45.
Vandenberghe LH, Bell P, Maguire AM, Cearley CN, Xiao R, Calcedo R, et al. Dosage thresholds for aav2 and aav8 photoreceptor gene therapy in monkey. Sci Transl Med. 2011;3(88):88ra54.
Bessis N, GarciaCozar FJ, Boissier MC. Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther. 2004;11 Suppl 1:S10–7.
Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4(5):346–58.
Tamboli V, Mishra GP, Mitra AK. Polymeric vectors for ocular gene delivery. Ther Deliv; 2(4):523–536.
Liu HA, Liu YL, Ma ZZ, Wang JC, Zhang Q. A lipid nanoparticle system improves sirna efficacy in rpe cells and a laser-induced murine cnv model. Invest Ophthalmol Vis Sci. 2011;52(7):4789–94.
Shafaa MW, El Shazly LH, El Shazly AH, El Gohary AA, El Hossary GG. Efficacy of topically applied liposome-bound tetracycline in the treatment of dry eye model. Vet Ophthalmol. 2011;14(1):18–25.
Kawakami S, Harada A, Sakanaka K, Nishida K, Nakamura J, Sakaeda T, et al. In vivo gene transfection via intravitreal injection of cationic liposome/plasmid DNA complexes in rabbits. Int J Pharm. 2004;278(2):255–62.
Koirala A, Conley SM, Naash MI. A review of therapeutic prospects of non-viral gene therapy in the retinal pigment epithelium. Biomaterials. 2013;34(29):7158–67.
Grijalvo S, Ocampo SM, Perales JC, Eritja R. Synthesis of lipid-oligonucleotide conjugates for rna interference studies. Chem Biodivers. 2011;8(2):287–99.
Kokotos G, Verger R, Chiou A. Synthesis of 2-oxo amide triacylglycerol analogues and study of their inhibition effect on pancreatic and gastric lipases. Chemistry. 2000;6(22):4211–7.
Flannery JG, Visel M. Adeno-associated viral vectors for gene therapy of inherited retinal degenerations. Methods Mol Biol. 2013;935:351–69.
Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release. 2006;114(1):100–9.
Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials. 2008;29(24–25):3477–96.
Lenssen K, Jantscheff P, von Kiedrowski G, Massing U. Combinatorial synthesis of new cationic lipids and high-throughput screening of their transfection properties. Chembiochem. 2002;3(9):852–8.
Aberle AM, Tablin F, Zhu J, Walker NJ, Gruenert DC, Nantz MH. A novel tetraester construct that reduces cationic lipid-associated cytotoxicity. Implications for the onset of cytotoxicity. Biochemistry. 1998;37(18):6533–40.
Zhi D, Zhang S, Wang B, Zhao Y, Yang B, Yu S. Transfection efficiency of cationic lipids with different hydrophobic domains in gene delivery. Bioconjug Chem. 2010;21(4):563–77.
del Pozo-Rodriguez A, Delgado D, Solinis MA, Gascon AR, Pedraz JL. Solid lipid nanoparticles: formulation factors affecting cell transfection capacity. Int J Pharm. 2007;339(1–2):261–8.
Meyer O, Kirpotin D, Hong K, Sternberg B, Park JW, Woodle MC, et al. Cationic liposomes coated with polyethylene glycol as carriers for oligonucleotides. J Biol Chem. 1998;273(25):15621–7.
Liu F, Yang J, Huang L, Liu D. Effect of non-ionic surfactants on the formation of DNA/emulsion complexes and emulsion-mediated gene transfer. Pharm Res. 1996;13(11):1642–6.
Ma B, Zhang S, Jiang H, Zhao B, Lv H. Lipoplex morphologies and their influences on transfection efficiency in gene delivery. J Control Release. 2007;123(3):184–94.
Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature. 2003;422(6927):37–44.
Ross PC, Hui SW. Lipoplex size is a major determinant of in vitro lipofection efficiency. Gene Ther. 1999;6(4):651–9.
McClements ME, MacLaren RE. Gene therapy for retinal disease. Transl Res. 2013;161(4):241–54.
del Pozo-Rodriguez A, Delgado D, Solinis MA, Gascon AR, Pedraz JL. Solid lipid nanoparticles for retinal gene therapy: transfection and intracellular trafficking in rpe cells. Int J Pharm. 2008;360(1–2):177–83.
Nguyen LT, Atobe K, Barichello JM, Ishida T, Kiwada H. Complex formation with plasmid DNA increases the cytotoxicity of cationic liposomes. Biol Pharm Bull. 2007;30(4):751–7.
Villa-Diaz LG, Garcia-Perez JL, Krebsbach PH. Enhanced transfection efficiency of human embryonic stem cells by the incorporation of DNA liposomes in extracellular matrix. Stem Cells Dev. 2010;19(12):1949–57.
Hims MM, Diager SP, Inglehearn CF. Retinitis pigmentosa: genes, proteins and prospects. Dev Ophthalmol. 2003;37:109–25.
Conley SM, Naash MI. Nanoparticles for retinal gene therapy. Prog Retin Eye Res. 2010;29(5):376–97.
Peeters L, Sanders NN, Braeckmans K, Boussery K, Van de Voorde J, De Smedt SC, et al. Vitreous: a barrier to nonviral ocular gene therapy. Invest Ophthalmol Vis Sci. 2005;46(10):3553–61.
Liu X, Rasmussen CA, Gabelt BT, Brandt CR, Kaufman PL. Gene therapy targeting glaucoma: where are we? Surv Ophthalmol. 2009;54(4):472–86.
ACKNOWLEDGMENTS AND DISCLOSURES
This project was partially supported by the University of the Basque Country UPV/EHU (UFI 11/32), by the Research Chair in Retinitis Pigmentosa ¨Bidons Egara¨, and by the National Organization of Spanish Blind People (ONCE). Technical and human support provided by SGIker (UPV/EHU) is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ochoa, G.P., Sesma, J.Z., Díez, M.A. et al. A Novel Formulation Based on 2,3-Di(tetradecyloxy)propan-1-amine Cationic Lipid Combined with Polysorbate 80 for Efficient Gene Delivery to the Retina. Pharm Res 31, 1665–1675 (2014). https://doi.org/10.1007/s11095-013-1271-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11095-013-1271-5