[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

A Novel Formulation Based on 2,3-Di(tetradecyloxy)propan-1-amine Cationic Lipid Combined with Polysorbate 80 for Efficient Gene Delivery to the Retina

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The aim of the present study was to evaluate the potential application of a novel formulation based on a synthesized cationic lipid 2,3-di(tetradecyloxy)propan-1-amine, combined with polysorbate 80 to deliver the pCMS-EGFP plasmid into the rat retina.

Methods

We elaborated lipoplexes by mixing the formulation containing the cationic lipid and the polysorbate 80 with the plasmid at different cationic lipid/DNA ratios (w/w). Resulted lipoplexes were characterized in terms of size, charge, and capacity to condense, protect and release the DNA. In vitro transfection studies were performed in HEK-293 and ARPE-19 cells. Formulations were also tested in vivo by monitoring the expression of the EGFP after intravitreal and subretinal injections in rat eyes.

Results

At 2/1 cationic lipid/DNA mass ratio, the resulted lipoplexes had 200 nm of hydrodynamic diameter; were positive charged, spherical, protected DNA against enzymatic digestion and transfected efficiently HEK-293 and ARPE-19 cultured cells exhibiting lower cytotoxicity than LipofectamineTM 2000. Subretinal administrations transfected mainly photoreceptors and retinal pigment epithelial cells; whereas intravitreal injections produced a more uniform distribution of transfection through the inner part of the retina.

Conclusions

These results hold great expectations for other gene delivery formulations based on this cationic lipid for retinal gene therapy purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Lipinski DM, Thake M, Maclaren RE. Clinical applications of retinal gene therapy. Prog Retin Eye Res. 2012;32:22–47.

    Article  PubMed  Google Scholar 

  2. Charbel Issa P, MacLaren RE. Non-viral retinal gene therapy: a review. Clin Experiment Ophthalmol. 2012;40(1):39–47.

    Article  PubMed  Google Scholar 

  3. Liu MM, Tuo J, Chan CC. Gene therapy for ocular diseases. Br J Ophthalmol. 2011;95(5):604–12.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Bloquel C, Bourges JL, Touchard E, Berdugo M, BenEzra D, Behar-Cohen F. Non-viral ocular gene therapy: potential ocular therapeutic avenues. Adv Drug Deliv Rev. 2006;58(11):1224–42.

    Article  CAS  PubMed  Google Scholar 

  5. Naik R, Mukhopadhyay A, Ganguli M. Gene delivery to the retina: focus on non-viral approaches. Drug Discov Today. 2009;14(5–6):306–15.

    Article  CAS  PubMed  Google Scholar 

  6. Colella P, Auricchio A. Gene therapy of inherited retinopathies: a long and successful road from viral vectors to patients. Hum Gene Ther. 2012;23(8):796–807.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, et al. Effect of gene therapy on visual function in leber’s congenital amaurosis. N Engl J Med. 2008;358(21):2231–9.

    Article  CAS  PubMed  Google Scholar 

  8. Cideciyan AV, Aleman TS, Boye SL, Schwartz SB, Kaushal S, Roman AJ, et al. Human gene therapy for rpe65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci U S A. 2008;105(39):15112–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Maguire AM, Simonelli F, Pierce EA, Pugh Jr EN, Mingozzi F, Bennicelli J, et al. Safety and efficacy of gene transfer for leber’s congenital amaurosis. N Engl J Med. 2008;358(21):2240–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Mussolino C, del la Corte M, Rossi S, Viola F, Di Vicino U, Marrocco E, et al. Aav-mediated photoreceptor transduction of the pig cone-enriched retina. Gene Ther. 2011;18(7):637–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Vandenberghe LH, Bell P, Maguire AM, Cearley CN, Xiao R, Calcedo R, et al. Dosage thresholds for aav2 and aav8 photoreceptor gene therapy in monkey. Sci Transl Med. 2011;3(88):88ra54.

    Article  CAS  PubMed  Google Scholar 

  12. Bessis N, GarciaCozar FJ, Boissier MC. Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther. 2004;11 Suppl 1:S10–7.

    Article  CAS  PubMed  Google Scholar 

  13. Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4(5):346–58.

    Article  CAS  PubMed  Google Scholar 

  14. Tamboli V, Mishra GP, Mitra AK. Polymeric vectors for ocular gene delivery. Ther Deliv; 2(4):523–536.

  15. Liu HA, Liu YL, Ma ZZ, Wang JC, Zhang Q. A lipid nanoparticle system improves sirna efficacy in rpe cells and a laser-induced murine cnv model. Invest Ophthalmol Vis Sci. 2011;52(7):4789–94.

    Article  CAS  PubMed  Google Scholar 

  16. Shafaa MW, El Shazly LH, El Shazly AH, El Gohary AA, El Hossary GG. Efficacy of topically applied liposome-bound tetracycline in the treatment of dry eye model. Vet Ophthalmol. 2011;14(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  17. Kawakami S, Harada A, Sakanaka K, Nishida K, Nakamura J, Sakaeda T, et al. In vivo gene transfection via intravitreal injection of cationic liposome/plasmid DNA complexes in rabbits. Int J Pharm. 2004;278(2):255–62.

    Article  CAS  PubMed  Google Scholar 

  18. Koirala A, Conley SM, Naash MI. A review of therapeutic prospects of non-viral gene therapy in the retinal pigment epithelium. Biomaterials. 2013;34(29):7158–67.

    Article  CAS  PubMed  Google Scholar 

  19. Grijalvo S, Ocampo SM, Perales JC, Eritja R. Synthesis of lipid-oligonucleotide conjugates for rna interference studies. Chem Biodivers. 2011;8(2):287–99.

    Article  CAS  PubMed  Google Scholar 

  20. Kokotos G, Verger R, Chiou A. Synthesis of 2-oxo amide triacylglycerol analogues and study of their inhibition effect on pancreatic and gastric lipases. Chemistry. 2000;6(22):4211–7.

    Article  CAS  PubMed  Google Scholar 

  21. Flannery JG, Visel M. Adeno-associated viral vectors for gene therapy of inherited retinal degenerations. Methods Mol Biol. 2013;935:351–69.

    Article  CAS  PubMed  Google Scholar 

  22. Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release. 2006;114(1):100–9.

    Article  CAS  PubMed  Google Scholar 

  23. Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials. 2008;29(24–25):3477–96.

    Article  CAS  PubMed  Google Scholar 

  24. Lenssen K, Jantscheff P, von Kiedrowski G, Massing U. Combinatorial synthesis of new cationic lipids and high-throughput screening of their transfection properties. Chembiochem. 2002;3(9):852–8.

    Article  CAS  PubMed  Google Scholar 

  25. Aberle AM, Tablin F, Zhu J, Walker NJ, Gruenert DC, Nantz MH. A novel tetraester construct that reduces cationic lipid-associated cytotoxicity. Implications for the onset of cytotoxicity. Biochemistry. 1998;37(18):6533–40.

    Article  CAS  PubMed  Google Scholar 

  26. Zhi D, Zhang S, Wang B, Zhao Y, Yang B, Yu S. Transfection efficiency of cationic lipids with different hydrophobic domains in gene delivery. Bioconjug Chem. 2010;21(4):563–77.

    Article  CAS  PubMed  Google Scholar 

  27. del Pozo-Rodriguez A, Delgado D, Solinis MA, Gascon AR, Pedraz JL. Solid lipid nanoparticles: formulation factors affecting cell transfection capacity. Int J Pharm. 2007;339(1–2):261–8.

    Article  PubMed  Google Scholar 

  28. Meyer O, Kirpotin D, Hong K, Sternberg B, Park JW, Woodle MC, et al. Cationic liposomes coated with polyethylene glycol as carriers for oligonucleotides. J Biol Chem. 1998;273(25):15621–7.

    Article  CAS  PubMed  Google Scholar 

  29. Liu F, Yang J, Huang L, Liu D. Effect of non-ionic surfactants on the formation of DNA/emulsion complexes and emulsion-mediated gene transfer. Pharm Res. 1996;13(11):1642–6.

    Article  CAS  PubMed  Google Scholar 

  30. Ma B, Zhang S, Jiang H, Zhao B, Lv H. Lipoplex morphologies and their influences on transfection efficiency in gene delivery. J Control Release. 2007;123(3):184–94.

    Article  CAS  PubMed  Google Scholar 

  31. Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature. 2003;422(6927):37–44.

    Article  CAS  PubMed  Google Scholar 

  32. Ross PC, Hui SW. Lipoplex size is a major determinant of in vitro lipofection efficiency. Gene Ther. 1999;6(4):651–9.

    Article  CAS  PubMed  Google Scholar 

  33. McClements ME, MacLaren RE. Gene therapy for retinal disease. Transl Res. 2013;161(4):241–54.

    Article  CAS  PubMed  Google Scholar 

  34. del Pozo-Rodriguez A, Delgado D, Solinis MA, Gascon AR, Pedraz JL. Solid lipid nanoparticles for retinal gene therapy: transfection and intracellular trafficking in rpe cells. Int J Pharm. 2008;360(1–2):177–83.

    Article  PubMed  Google Scholar 

  35. Nguyen LT, Atobe K, Barichello JM, Ishida T, Kiwada H. Complex formation with plasmid DNA increases the cytotoxicity of cationic liposomes. Biol Pharm Bull. 2007;30(4):751–7.

    Article  CAS  PubMed  Google Scholar 

  36. Villa-Diaz LG, Garcia-Perez JL, Krebsbach PH. Enhanced transfection efficiency of human embryonic stem cells by the incorporation of DNA liposomes in extracellular matrix. Stem Cells Dev. 2010;19(12):1949–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Hims MM, Diager SP, Inglehearn CF. Retinitis pigmentosa: genes, proteins and prospects. Dev Ophthalmol. 2003;37:109–25.

    Article  CAS  PubMed  Google Scholar 

  38. Conley SM, Naash MI. Nanoparticles for retinal gene therapy. Prog Retin Eye Res. 2010;29(5):376–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Peeters L, Sanders NN, Braeckmans K, Boussery K, Van de Voorde J, De Smedt SC, et al. Vitreous: a barrier to nonviral ocular gene therapy. Invest Ophthalmol Vis Sci. 2005;46(10):3553–61.

    Article  PubMed  Google Scholar 

  40. Liu X, Rasmussen CA, Gabelt BT, Brandt CR, Kaufman PL. Gene therapy targeting glaucoma: where are we? Surv Ophthalmol. 2009;54(4):472–86.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This project was partially supported by the University of the Basque Country UPV/EHU (UFI 11/32), by the Research Chair in Retinitis Pigmentosa ¨Bidons Egara¨, and by the National Organization of Spanish Blind People (ONCE). Technical and human support provided by SGIker (UPV/EHU) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Luis Pedraz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 97 kb)

ESM 2

(JPEG 42 kb)

High resolution image (TIFF 6882 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochoa, G.P., Sesma, J.Z., Díez, M.A. et al. A Novel Formulation Based on 2,3-Di(tetradecyloxy)propan-1-amine Cationic Lipid Combined with Polysorbate 80 for Efficient Gene Delivery to the Retina. Pharm Res 31, 1665–1675 (2014). https://doi.org/10.1007/s11095-013-1271-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1271-5

KEY WORDS

Navigation