Abstract
Water-soluble, biodegradable, polymeric, polyelectrolyte complex dispersions (PECs) have evolved because of the limitations, in terms of toxicity, of the currently available systems. These aqueous nanoparticulate architectures offer a significant advantage for products that may be used as drug delivery systems in humans. PECs are created by mixing oppositely charged polyions. Their hydrodynamic diameter, surface charge, and polydispersity are highly dependent on concentration, ionic strength, pH, and molecular parameters of the polymers that are used. In particular, the complexation between polyelectrolytes with significantly different molecular weights leads to the formation of water-insoluble aggregates. Several PEC characteristics are favorable for cellular uptake and colloidal stability, including hydrodynamic diameter less than 200 nm, surface charge of >30 mV or <−30 mV, spherical morphology, and polydispersity index (PDI) indicative of a homogeneous distribution. Maintenance of these properties is critical for a successful delivery vehicle. This review focuses on the development and potential applications of PECs as multi-functional, site-specific nanoparticulate drug/gene delivery and imaging devices.
Similar content being viewed by others
References
S. M. Moghimi, A. C. Hunter, and J. C. Murray. Nanomedicine: current status and future prospects. FASEB J. 19(3):311–330 (2005).
A. Bianco, K. Kostarelos, and M. Prato. Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9(6):674–679 (2005).
A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti. Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. U.S.A. 103(8):2480–2487 (2006).
E. Lavik and R. Langer. Tissue engineering: current state and perspectives. Appl. Microbiol. Biotechnol. 65(1):1–8 (2004).
B. Catimel, T. Domagala, M. Nerrie, J. Weinstock, S. White, H. Abud, J. Heath, and E. Nice. Recent applications of instrumental biosensors for protein and peptide structure–function studies. Prot. Peptide Letters 6(5):319–340 (1999).
S. Taylor, L. W. Qu, A. Kitaygorodskiy, J. Teske, R. A. Latour, and Y. P. Sun. Synthesis and characterization of peptide-functionalized polymeric nanoparticles. Biomacromolecules 5(1):245–248 (2004).
S. V. Vinogradov, T. K. Bronich, and A. V. Kabanov. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv. Drug Deliv. Rev. 54(1):135–147 (2002).
T. M. Allen and P. R. Cullis. Drug delivery systems: entering the mainstream. Science 303(5665):1818–1822 (2004).
R. Haag and F. Vogtle. Highly branched macromolecules at the interface of chemistry, biology, physics, and medicine. Angew. Chem. Int. Ed. 43(3):272–273 (2004).
M. Kramer, J. F. Stumbe, G. Grimm, B. Kaufmann, U. Kruger, M. Weber, and R. Haag. Dendritic polyamines: Simple access to new materials with defined treelike structures for application in nonviral gene delivery. Chem. Biochem. 5(8):1081–1087 (2004).
S. M. Moghimi, A. C. Hunter, and J. C. Murray. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53(2):283–318 (2001).
G. Verderone, N. van Craynest, O. Boussif, C. Santaella, R. Bischoff, H. V. J. Kolbe, and P. Vierling. Lipopolycationic telomers for gene transfer: synthesis and evaluation of their in vitro transfection efficiency. J. Med. Chem. 43(7):1367–1379 (2000).
D. C. Drummond, M. Zignani, and J. C. Leroux. Current status of pH-sensitive liposomes in drug delivery. Prog. Lipid Res. 39(5):409–460 (2000).
J. Panyam, W. Z. Zhou, S. Prabha, S. K. Sahoo, and V. Labhasetwar. Rapid endo-lysosomal escape of poly(dl-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 16(10) (2002).
W. L. Monsky, D. Fukumura, T. Gohongi, M. Ancukiewcz, H. A. Weich, V. P. Torchilin, F. Yuan, and R. K. Jain. Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor. Cancer Res. 59(16):4129–4135 (1999).
H. Winet, J. O. Hollinger, and M. Stevanovic. Incorporation of polylactide–polyglycolide in a cortical defect—neoangiogenesis and blood-supply in a bone chamber. J. Orthop. Res. 13(5):679–689 (1995).
M. Guzman, J. Molpeceres, F. Garcia, and M. R. Aberturas. Preparation, characterization and in vitro drug release of poly-epsilon–caprolactone and hydroxypropyl methylcellulose phthalate ketoprofen loaded microspheres. J. Microencapsul. 13(1):25–39 (1996).
J. Kreuter, P. Ramge, V. Petrov, S. Hamm, S. E. Gelperina, B. Engelhardt, R. Alyautdin, H. von Briesen, and D. J. Begley. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm. Res. 20(3):409–416 (2003).
J. C. Olivier, L. Fenart, R. Chauvet, C. Pariat, R. Cecchelli, and W. Couet. Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharm. Res. 16(12):1836–1842 (1999).
V. Labhasetwar, J. Bonadio, S. A. Goldstein, and J. R. Levy. Gene transfection using biodegradable nanospheres: results in tissue culture and a rat osteotomy model. Colloids Surf., B Biointerfaces 16(1–4):281–290 (1999).
C. Coester, P. Nayyar, and J. Samuel. in vitro uptake of gelatin nanoparticles by murine dendritic cells and their intracellular localisation. Eur. J. Pharm. Biopharm. 62(3):306–314 (2006).
P. Panyam and V. Labhasetwar. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug. Deliv. Rev. 55:329–347 (2003).
S. Watnasirichaikul, N. M. Davies, T. Rades, and I. G. Tucker. Preparation of biodegradable insulin nanocapsules from biocompatible microemulsions. Pharm. Res. 17(6):684–689 (2000).
I. Roy, S. Mitra, A. Maitra, and S. Mozumdar. Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery. Int. J. Pharm. 250(1):25–33 (2003).
A. K. Cherian, A. C. Rana, and S. K. Jain. Self-assembled carbohydrate-stabilized ceramic nanoparticles for the parenteral delivery of insulin. Drug Dev. Ind. Pharm. 26(4):459–463 (2000).
J. M. Bergen, H. A. Von Recum, T. T. Goodman, A. P. Massey, and S. H. Pun. Gold nanoparticles as a versatile platform for optimizing physicochemical parameters for targeted drug delivery. Macromol. Biosci. 6(7):506–516 (2006).
S. Z. Wang, R. M. Gao, F. M. Zhou, and M. Selke. Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy. J. Mater. Chem. 14(4):487–493 (2004).
X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22(8):969–976 (2004).
K. Kataoka, A. Harada, and Y. Nagasaki. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev. 47(1):113–131 (2001).
Y.Yamamoto, Y. Nagasaki, Y. Kato, Y. Sugiyama, and K. Kataoka. Long-circulating poly(ethylene glycol)–poly(d,l-lactide) block copolymer micelles with modulated surface charge. J. Control Release 77(1–2):27–38 (2001).
M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y. Sakurai, K. Kataoka, and S. Inoue. Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)–poly(aspartic acid) block copolymer. Cancer Res. 50(6):1693–1700 (1990).
F. Q. Yu, Y. P. Liu, and R. X. Zhu. A novel method for the preparation of core-shell nanoparticles and hollow polymer nanospheres. J. Appl. Polym. Sci. 91(4):2594–2600 (2004).
J. Kamps, P. J. Swart, H. W. M. Morselt, R. Pauwels, M. P. DeBethune, E. DeClercq, D. K. F. Meijer, and G. L. Scherphof. Preparation and characterization of conjugates of (modified) human serum albumin and liposomes: Drug carriers with an intrinsic anti-HIV activity. Biochim. Biophys. Acta Biomembr. 1278(2):183–190 (1996).
A. C. Deverdiere, C. Dubernet, F. Nemati, M. F. Poupon, F. Puisieux, and P. Couvreur. Uptake of doxorubicin from loaded nanoparticles in multidrug-resistant leukemic murine cells. Cancer Chemother. Pharmacol. 33(6):504–508 (1994).
D. Hallahan, L. Geng, S. M. Qu, C. Scarfone, T. Giorgio, E. Donnelly, X. Gao, and J. Clanton. Integrin-mediated targeting of drug delivery to irradiated tumor blood vessels. Cancer Cell 3(1):63–74 (2003).
S. S. Talsma, J. E. Babensee, N. Murthy, and I. R. Williams. Development and in vitro validation of a targeted delivery vehicle for DNA vaccines. J. Control Release 112(2):271–279 (2006).
C. Z. S. Chen and S. L. Cooper. Interactions between dendrimer biocides and bacterial membranes. Biomaterials 23(16):3359–3368 (2002).
J. F. Kukowska-Latallo, K. A. Candido, Z. Y. Cao, S. S. Nigavekar, I. J. Majoros, T. P. Thomas, L. P. Balogh, M. K. Khan, and J. R. Baker. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 65(12):5317–5324 (2005).
T. P. Thomas, I. J. Majoros, A. Kotlyar, J. F. Kukowska-Latallo, A. Bielinska, A. Myc, and J. R. Baker. Targeting and inhibition of cell growth by an engineered dendritic nanodevice. J. Med. Chem. 48(11):3729–3735 (2005).
M. Witvrouw, V. Fikkert, W.Pluymers, B. Matthews, K. Mardel, D. Schols, J. Raff, Z. Debyser, E. De Clercq, G. Holan, and C. Pannecouque. Polyanionic (i.e., polysulfonate) dendrimers can inhibit the replication of human immunodeficiency virus by interfering with both virus adsorption and later steps (reverse transcriptase/integrase) in the virus replicative cycle. Mol. Pharmacol. 58(5):1100–1108 (2000).
C. Vauthier-Holtzscherer, S. Benabbou, G. Spenlehauer, M. Veillard, and P. Couvreur. Methodology for the preparation of ultra-dispersed polymer systems. STP Pharma. Sci. 2:109–116 (1991).
T. Cruz, R. Gaspar, A. Donato, and C. Lopes. Interaction between polyalkylcyanoacrylate nanoparticles and peritoneal macrophages: MTT metabolism, NBT reduction, and NO production. Pharm. Res. 14(1):73–79 (1997).
S. Hanafusa, Y. Matsusue, T. Yasunaga, T. Yamamuro, M. Oka, Y. Shikinami, and Y. Ikada. Biodegradable plate fixation of rabbit femoral-shaft osteotomies—a comparative study. Clin. Orthop. Rel. Res. 315:262–271 (1995).
Y. Matsusue, S. Hanafusa, T.Yamamuro, Y. Shikinami, and Y. Ikada. Tissue reaction of bioabsorbable ultra-high strength poly(l-lactide) rod—a long-term study in rabbits. Clin. Orthop. Rel. Res. 317:246–253 (1995).
C. Schatz, J. M. Lucas, C. Viton, A. Domard, C. Pichot, and T. Delair. Formation and properties of positively charged colloids based on polyelectrolyte complexes of biopolymers. Langmuir 20:7766–7778 (2004).
G. Carlesso, E. Kozlov, A. Prokop, D. Unutmaz, and J. M. Davidson. Nanoparticulate system for efficient gene transfer into refractory cell targets. Biomacromolecules 6(3):1185–1192 (2005).
K. D. Fisher, K. Ulbrich, V. Subr, C. M. Ward, V. Mautner, D. Blakey, L. and W. Seymour. A versatile system for receptor-mediated gene delivery permits increased entry of DNA into target cells, enhanced delivery to the nucleus and elevated rates of transgene expression. Gene Ther. 7(15):1337–1343 (2000).
M. A. Wolfert, P. R. Dash, O. Nazarova, D. Oupicky, L. W. Seymour, S. Smart, J. Strohalm, and K. Ulbrich. Polyelectrolyte vectors for gene delivery: influence of cationic polymer on biophysical properties of complexes formed with DNA. Bioconjug. Chem. 10(6):993–1004 (1999).
B. Thu, P. Bruheim, T. Espevik, O. Smidsrod, P. SoonShiong, and G. SkjakBraek. Alginate polycation microcapsules.1. Interaction between alginate and polycation. Biomaterials 17(10):1031–1040 (1996).
T. Wang, I. Lacik, M. Brissova, A. V. Anilkumar, A. Prokop, D. Hunkeler, R. Green, K. Shahrokhi, and A. C. Powers. An encapsulation system for the immunoisolation of pancreatic islets. Nat. Biotechnol. 15(4):358–362 (1997).
S. Dragan, M. Cristea, C. Luca, and B. C. Simionescu. Polyelectrolyte complexes.1. Synthesis and characterization of some insoluble polyanion–polycation complexes. J. Polym. Sci. Pol. Chem. 34(17):3485–3494 (1996).
H. Dautzenberg. Light scattering studies on polyelectrolyte complexes. Macromol. Symp. 162:1–21 (2000).
L. Webster, M. B. Huglin, and I. D. Robb. Complex formation between polyelectrolytes in dilute aqueous solution. Polymer 38(6):1373–1380 (1997).
A. V. Kabanov and V. A. Kabanov. DNA complexes with polycations for the delivery of genetic material into cells. Bioconjug. Chem. 6(1):7–20 (1995).
H. Dautzenberg and J. Kriz. Response of polyelectrolyte complexes to subsequent addition of salts with different cations. Langmuir 19(13):5204–5211 (2003).
S. M. Hartig, G. Carlesso, J. M. Davidson, and A. Prokop. Development of improved nanoparticulate polyelectrolyte complex physicochemistry by nonstoichiometric mixing of polyions with similar molecular weights. Biomacromolecules 8(1):265–272 (2007).
A. Prokop, D. Hunkeler, S. DiMari, M. A. Haralson, T. G. Wang. Water soluble polymers for immunoisolation I: Complex coacervation and cytoxicity. Adv. Polym. Sci. 136:1–51 (1998).
N. Le Roch, F.Douaud, R. Havouis, J. G. Delcros, M. Vaultier, J. P. Moulinox, and N. Seiler. Dimethylsilane polyamines: cytostatic compounds with potentials as anticancer drugs. II. Uptake and potential cytotoxic mechanisms. Anticancer Res. 22(6B):3765–3776 (2002).
T. A. Lane and V. Krukonis. Reduction in the toxicity of a component of an artificial blood substitute by supercritical fluid fractionation. Transfusion 28(4):375–378 (1988).
G. Orive, R. M. Hernandez, A. R. Gascon, R. Igartua, and J. L. Pedraz. Development and optimisation of alginate–PMCG–alginate microcapusles for cell immobilisation. Int. J. Pharm. 259(1–2):57–68 (2003).
S. M. Hartig, R. R. Greene, G. Carlesso, J. N. Higginbotham, W. N. Khan, A. Prokop, and J. M. Davidson. Kinetic analysis of nanoparticulate polyelectrolyte complexes interactions with endothelial cells. Biomaterials 28(26):3843–3855 (2007).
C. Foged, B. Brodin, S. Frokjaer, and A. Sundblad. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int. J. Pharm. 298(2):315–322 (2005).
J. Rejman, V. Oberle, I. S. Zuhorn, and D. Hoekstra. Size-dependent internalization of particles via the pathways of clathrin—and caveolae-mediated endocytosis. Biochem. J. 377:159–169 (2004).
K. C. Wood, S. R. Little, R. Langer, and P. T. Hammond. A family of hierarchically self-assembling linear-dendritic hybrid polymers for highly efficient targeted gene delivery. Angew. Chem Int. Ed. 44(41):6704–6708 (2005).
M. P. Desai, V. Labhasetwar, E. Walter, R. J. Levy, and G. L. Amidon. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm. Res. 14(11):1568–1573 (1997).
W. Zauner, N. A. Farrow, and A. M. R. Haines. In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J. Control Release 71(1):39–51 (2001).
C. S. Chern, C. K. Lee, and C. J. Chang. Electrostatic interactions between amphoteric latex particles and proteins. Colloid Polym. Sci. 283(3):257–264 (2004).
T. Trimaille, C. Pichot, A. Elaissari, H. Fessi, S. Briancon, and T. Delair. Poly(d,l-lactic acid) nanoparticle preparation and colloidal characterization. Colloid Polym. Sci. 281(12):1184–1190 (2003).
S. Sugrue. Predicting and controlling colloid suspension stability using electrophoretic mobility and particle size measurements. Am. Lab. 24(6):64–71 (1992).
M. Bernfield, M. Gotte, P. W. Park, O. Reizes, M. L. Fitzgerald, J. Lincecum, and M. Zako. Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68:729–777 (1999).
K. A. Mislick and J. D. Baldeschwieler. Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc. Natl. Acad. Sci. U.S.A. 93(22):12349–12354 (1996).
J. Panyam and V. Labhasetwar. Dynamics of endocytosis and exocytosis of poly(d,l-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm. Res. 20(2):212–220 (2003).
U. S. Huth, R. Schubert, and R. Peschka-Suss. Investigating the uptake and intracellular fate of pH-sensitive liposomes by flow cytometry and spectral bio-imaging. J. Control Release 110(3):490–504 (2006).
J. Panyam, D. Williams, A. Dash, D. Leslie-Pelecky, and V. Labhasetwar. Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. J. Pharm. Sci. 93(7):1804–1814 (2004).
R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer. Biodegradable long-circulating polymeric nanospheres. Science 263(5153):1600–1603 (1994).
J. P. Salvage, S. F. Rose, G. J. Phillips, G. W. Hanlon, A. W. Lloyd, I. Y. Ma, S. P. Armes, N. C. Billingham, and A. L. Lewis. Novel biocompatible phosphorylcholine-based self-assembled nanoparticles for drug delivery. J. Control Release 104(2):259–270 (2005).
J. C Wang, B. C. Goh, W. L. Lu, Q. Zhang, A. Chang, X. Y. Liu, T. M. C. Tan, and H. S. Lee. In vitro cytotoxicity of Stealth liposomes co-encapsulating doxorubicin and verapamil on doxorubicin-resistant tumor cells. Biol. Pharm. Bull. 28(5):822–828 (2005).
V. Bulmus, M. Woodward, L. Lin, N. Murthy, P. Stayton, and A. Hoffman. A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs. J. Control Release 93(2):105–120 (2003).
J. Davda and V. Labhasetwar. Characterization of nanoparticle uptake by endothelial cells. Int. J. Pharm. 233(1–2):51–59 (2002).
M. Amyere, M. Mettlen, P. Van der Smissen, A. Platek, B. Payrastre, A. Veithen, and P. J. Courtoy. Origin, originality, functions, subversions and molecular signalling of macropinocytosis. Int. J. Med. Microbiol. 291(6–7):487–494 (2002).
A. Catizone, L. M. Albani, F. Reola, and T. Alescio. A quantitative assessment of nonspecific pinocytosis by human endothelial cells surviving in vitro. Cell. Mol. Biol. 39(2):155–169 (1993).
I. Behrens, A. I. V. Pena, M. J. Alonso, and T. Kissel. Comparative uptake studies of bioadhesive and non-bioadhesive nanoparticles in human intestinal cell lines and rats: the effect of mucus on particle adsorption and transport. Pharm. Res. 19(8):1185–1193 (2002).
B. Zhao, Y. F. Li, C. Buono, S. W. Waldo, N. L. Jones, M. Mori, and H. S. Kruth. Constitutive receptor-independent low density lipoprotein uptake and cholesterol accumulation by macrophages differentiated from human monocytes with macrophage-colony-stimulating factor (M–CSF). J. Biol. Chem. 281(23):15757–15762 (2006).
M. S. Brown and J. L. Goldstein. Analysis of a mutant strain of human fibroblasts with a defect in internalization of receptor-bound low-density lipoprotein. Cell 9(4):663–674 (1976).
A. Dobrian, V. Lazar, D. Tirziu, and M. Simionescu. Increased macrophage uptake of irreversibly glycated albumin modified low density lipoproteins of normal and diabetic subjects is mediated by non-saturable mechanisms. Biochim. Biophys. Acta Mol. Basis Dis. 1317(1):5–14 (1996).
Z. Panagi, A. Beletsi, G. Evangelatos, E. Livaniou, D. S. Ithakissios, and K. Avgoustakis. Effect of dose on the biodistribution and pharmacokinetics of PLGA and PLGA–mPEG nanoparticles. Int. J. Pharm. 221(1–2):143–152 (2001).
C. M. Wiethoff, J. G. Smith, G. S. Koe, and C. R. Middaugh. The potential role of proteoglycans in cationic lipid-mediated gene delivery—studies of the interaction of cationic lipid–DNA complexes with model glycosaminoglycans. J. Biol. Chem. 276(35):32806–32813 (2001).
I. Nakase, M. Niwa, T. Takeuchi, K. Sonomura, N. Kawabata, Y. Koike, M. Takehashi, S. Tanaka, K. Ueda, J. C. Simpson, A. T. Jones, Y. Sugiura, and S. Futaki. Cellular uptake of arginine-rich peptides: Roles for macropinocytosis and actin rearrangement. Mol. Ther. 10(6):1011–1022 (2004).
T. Suzuki, S. Futaki, M. Niwa, S. Tanaka, K. Ueda, and Y. Sugiura. Possible existence of common internalization mechanisms among arginine-rich peptides. J. Biol. Chem. 277(4):2437–2443 (2002).
M. Belting. Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem. Sci. 28(3):145–151 (2003).
M. Belting, S. Persson, and L. A. Fransson. Proteoglycan involvement in polyamine uptake. Biochem. J. 338:317–323 (1999).
L. Tang, A. M. Persky, G. Hochhaus, and B. Meibohm. Pharmacokinetic aspects of biotechnology products. J. Pharm. Sci. 93(9):2184–2204 (2004).
G. Barratt. Colloidal drug carriers: achievements and perspectives. Cell. Mol. Life Sci. 60(1):21–37 (2003).
M. Vincent and R. Duncan. Polymer conjugates: Nanosized conjugates for treated cancer. Trends Biotechnol. 24(1):39–47 (2006).
T. C. Yih and M. Al-Fandi. Engineered nanoparticles as precise drug delivery systems. J. Cell. Biochem. 97(6):1184–1190 (2006).
E. H. Herman, J. Zhang, B. B. Hasinoff, D. P. Chadwick, J. R. Clark, and V. J. Ferrans. Comparison of the protective effects against chronic doxorubicin cardiotoxicity and the rates of iron (III) displacement reactions of ICRF-187 and other bisdiketopiperazines. Cancer Chemother. Pharmacol. 40(5):400–408 (1997).
M. Yokoyama, S. Fukushima, R. Uehara, K. Okamoto, K. Kataoka, Y. Sakurai, and T. Okano. Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor. J. Control Release 50(1–3):79–92 (1998).
R. Duncan. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2(5):347–360 (2003).
I. Astafieva, I. Maksimova, E. Lukanidin, V. Alakhov, and A. Kabanov. Enhancement of the polycation-mediated DNA uptake and cell transfection with pluronic P85 block copolymer. FEBS Lett. 389(3):278–280 (1996).
P. Calvo, C. RemunanLopez, J. L. VilaJato, and M. J. Alonso. Chitosan and chitosan ethylene oxide propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm. Res. 14(10):1431–1436 (1997).
M. H. Porteus, J. P. Connelly, and S. M. Pruett. A look to future directions in gene therapy research for monogenic diseases. PloS. Genet. 2(9):1285–1292 (2006).
Y. Wang and F. Yuan. Delivery of viral vectors to tumor cells: Extracellular transport, systemic distribution, and strategies for improvement. Ann. Biomed. Eng. 34(1):114–127 (2006).
T. Niwa, H. Takeuchi, T. Hino, N. Kunou, and Y. Kawashima. Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with d,l-lactide glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behavior. J. Control Release 25(1–2):89–98 (1993).
Y. Tabata, S. Gutta, and R. Langer. Controlled delivery systems for proteins using polyanhydride microspheres. Pharm. Res. 10(4):487–496 (1993).
S. Cohen, T. Yoshioka, M. Lucarelli, L. H. Hwang, and R. Langer. Controlled delivery systems for proteins based on poly(lactic glycolic acid) microspheres. Pharm. Res. 8(6):713–720 (1991).
O. L. Johnson, J. L. Cleland, H. J. Lee, M. Charnis, E. Duenas, W. Jaworowicz, D. Shepard, A. Shahzamani, A. J. S. Jones, and S. D. Putney. A month-long effect from a single injection of microencapsulated human growth hormone. Nat. Med. 2(7):795–799 (1996).
T. M. Allen. Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer 2(10):750–763 (2002).
M. C. P. Cruz, S. P. Ravagnani, F. M. S. Brogna, S. P. Campana, G. C. Trivino, A. C. L. Lisboa, and L. H. I. Mei. Evaluation of the diffusion coefficient for controlled release of oxytetracycline from alginate/chitosan/poly(ethylene glycol) microbeads in simulated gastrointestinal environments. Biotechnol. Appl. Biochem. 40:243–253 (2004).
S. K. Sahoo, T. K. De, P. K. Ghosh, and A. Maitra. pH- and thermo-sensitive hydrogel nanoparticles. J. Colloid Interface Sci. 206(2):361–368 (1998).
I. C. Kwon, Y. H. Bae, and S. W. Kim. Electrically erodible polymer gel for controlled release of drugs. Nature 354(6351):291–293 (1991).
S. K. Huang, P. R. Stauffer, K. L. Hong, J. W. H. Guo, T. L. Phillips, A. Huang, and D. Papahadjopoulos. Liposomes and hyperthermia in mice—increased tumor uptake and therapeutic efficacy of doxorubicin in sterically stabilized liposomes. Cancer Res. 54(8):2186–2191 (1994).
J. Kost, K. Leong, and R. Langer. Ultrasound-enhanced polymer degradation and release of incorporated substances—controlled release drug delivery systems. Proc. Natl. Acad. Sci. U.S.A. 86(20):7663–7666 (1989).
O. V. Gerasimov, J. A. Boomer, M. M. Qualls, and D. H. Thompson. Cytosolic drug delivery using pH- and light-sensitive liposomes. Adv. Drug Deliv. Rev. 38(3):317–338 (1999).
N. Kamiya and A. M. Klibanov. Controling the rate of protein release from polyelectrolyte complexes. Biotechnol. Bioeng. 82(5):590–594 (2003).
X. W. Shi, Y. M. Du, L. P. Sun, B. Z. Zhang, and A. Dou. Polyelectrolvte complex beads composed of water-soluble chitosan/alginate: Characterization and their protein release behavior. J. Appl. Polym. Sci. 100(6):4614–4622 (2006).
A. Zezin, V. Rogacheva, V. Skobeleva, and V. Kabanov. Controlled uptake and release of proteins by polyelectrolyte gels. Polym. Adv. Technol. 13(10–12):919–925 (2002).
C. Allen, D. Maysinger, and A. Eisenberg. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf., B Biointerfaces 16(1–4):3–27 (1999).
K. Fu, R. Harrell, K. Zinski, C. Um, A. Jaklenec, J. Frazier, N. Lotan, P. Burke, A. M. Klibanov, and R. Langer. A potential approach for decreasing the burst effect of protein from PLGA microspheres. J. Pharm. Sci. 92(8):1582–1591 (2003).
J. Lu, E. Jeon, B. S. Lee, H. Onyuksel, and Z. J. J. Wang. Targeted drug delivery crossing cytoplasmic membranes of intended cells via ligand-grafted sterically stabilized liposomes. J. Control Release 110(3):505–513 (2006).
S. Kessner, A. Krause, U. Rothe, and G. Bendas. Investigation of the cellular uptake of E-Selectin-targeted immunoliposomes by activated human endothelial cells. Biochim. Biophys. Acta Biomembr. 1514(2):177–190 (2001).
J. D. Hood, M. Bednarski, R. Frausto, S.Guccione, R. A. Reisfeld, R. Xiang, and D. A. Cheresh. Tumor regression by targeted gene delivery to the neovasculature. Science 296(5577):2404–2407 (2002).
M. Kolonin, R. Pasqualini, and W. Arap. Molecular addresses in blood vessels as targets for therapy. Curr. Opin. Chem. Biol. 5(3):308–313 (2001).
E. Ruoslahti. Targeting tumor vasculature with homing peptides from phage display. Semin. Cancer Biol. 10(6):435–442 (2000).
D. Neri and R. Bicknell. Tumour vascular targeting. Nat. Rev. Cancer 5(6):436–446 (2005).
N. Ferrara and R. S. Kerbel. Angiogenesis as a therapeutic target. Nature 438(7070):967–974 (2005).
J. Folkman. Tumor angiogenesis: therapeutic implications. N. Eng. J. Med. 285(21):1182–1186 (1971).
O. C. Farokhzad, S. Y. Jon, A. Khadelmhosseini, T. N. T. Tran, D. A. LaVan, and R. Langer. Nanopartide–aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res. 64(21):7668–7672 (2004).
A. Gabizon, A. T. Horowitz, D. Goren, D. Tzemach, F. Mandelbaum-Shavit, M. M. Qazen, and S. Zalipsky. Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: In vitro studies. Bioconjug. Chem. 10(2):289–298 (1999).
A. J. Schraa, R. J. Kok, H. E. Moorlag, E. J. Bos, J. H. Proost, D. K. F. Meijer, L. de Leu, and G. Molema. Targeting of RGD-modified proteins to tumor vasculature: A pharmacokinetic and cellular distribution study. Int. J. Cancer 102(5):469–475 (2002).
F. J. Verbaan, C. Oussoren, C. J. Snel, D. J. A. Crommelin, W. E. Hennink, and G. Storm. Steric stabilization of poly(2-(dimethylamino)ethyl methacrytate)-based polyplexes mediates prolonged circulation and tumor targeting in mice. J. Gene Med. 6(1):64–75 (2004).
A. Quintana, E. Raczka, L. Piehler, I. Lee, A. Myc, I. Majoros, A. K. Patri, T. Thomas, J. Mule, and J. R. Baker. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm. Res. 19(9):1310–1316 (2002).
S. H. Kim, J. H. Jeong, K. W. Chun, and T. G. Park. Target-specific cellular uptake of PLGA nanoparticles coated with poly(l-lysine)-poly(ethylene glycol)-folate conjugate. Langmuir 21(19):8852–8857 (2005).
S. H. Kim, J. H. Jeong, C. O. Joe, and T. G. Park. Folate receptor mediated intracellular protein delivery using PLL–PEG–FOL conjugate. J. Control Release 103(3):625–634 (2005).
W. J. Kim, J. W. Yockman, M. Lee, J. H. Jeong, Y. H. Kim, and S. W. Kim. Soluble Flt-1 gene delivery using PEI-g-PEG-RGD conjugate for anti-angiogenesis. J. Control Release 106(1–2):224–234 (2005).
W. Suh, S. O. Han, L. Yu, and S. W. Kim. An angiogenic, endothelial-cell-targeted polymeric gene carrier. Mol. Ther. 6(5):664–672 (2002).
J. H. Park, S. G. Kwon, J. O. Nam, R. W. Park, H. Chung, S. B.Seo, I. S. Kim, I. C. Kwon, and S. Y. Jeong. Self-assembled nanoparticles based on glycol chitosan bearing 5 beta-cholanic acid for RGD peptide delivery. J. Control Release 95(3):579–588 (2004).
U. Hersel, C. Dahmen, and H. Kessler. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24(24):4385–4415 (2003).
L. J. Hofland, A. Capello, E. P. Krenning, M. de Jong, and M. P. van Hagen. Induction of apoptosis with hybrids of Arg–Gly–Asp molecules and peptides and antimitotic effects of hybrids of cytostatic drugs and peptides. J. Nucl. Med. 46:191S–198S (2005).
J. Takagi. Structural basis for ligand recognition by RGD (Arg–Gly–Asp)-dependent integrins. Biochem. Soc. Trans. 32:403–406 (2004).
Y. Wu, W. B. Cai, and X. Y. Chen. Near-infrared fluorescence imaging of tumor integrin alpha(v)beta(3) expression with Cy7-labeled RGD multimers. Mol. Imaging Biol. 8(4):226–236 (2006).
D. J. Good, P. J. Polverini, F. Rastinejad, M. M. Lebeau, R. S. Lemons, W. A. Frazier, and N. P. Bouck. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc. Natl. Acad. Sci. U.S.A. 87(17):6624–6628 (1990).
I. Mikhailenko, D. Krylov, K. M. Argraves, D. D. Roberts, G. Liau, and D. K. Strickland. Cellular internalization and degradation of thrombospondin-1 is mediated by the amino-terminal heparin binding domain (HBD)—high affinity interaction of dimeric HBD with the low density lipoprotein receptor-related protein. J. Biol. Chem. 272(10):6784–6791 (1997).
S. Godyna, G. Liau, I. Popa, S. Stefansson, and W. S. Argraves. Identification of the low density lipoprotein receptor-related protein (Lrp) as an endocytic receptor for thrombospondin-1. J. Cell. Biol. 129(5):1403–1410 (1995).
H. Engelberg. Actions of heparin that may affect the malignant process. Cancer 85(2):257–272 (1999).
M. Barbareschi, P. Maisonneuve, D. Aldovini, M. G. Cangi, L. Pecciarini, F. A. Mauri, S. Veronese, O. Caffo, A. Lucenti, P. D. Palma, E. Galligioni, and C. Doglioni. High syndecan-1 expression in breast carcinoma is related to an aggressive phenotype and to poorer prognosis. Cancer 98(3):474–483 (2003).
D. H. Qiao, K. Meyer, C. Mundhenke, S. A. Drew, and A. Friedl. Heparan sulfate proteoglycans as regulators of fibroblast growth factor-2 signaling in brain endothelial cells. J. Biol. Chem. 278(18):16045–16053 (2003).
G. Su, K. Meyer, C. D. Nandini, D. H. Qiao, S. Salamat, and A. Friedl. Glypican-1 is frequently overexpressed in human gliomas and enhances FGF-2 signaling in glioma cells. Am. J. Pathol. 168(6):2014–2026 (2006).
A.R Clamp and G. C. Jayson. The clinical potential of antiangiogenic fragments of extracellular matrix proteins. Br. J. Cancer 93(9):967–972 (2005).
A. A. Bogdanov, E. Marecos, H. C. Cheng, L. Chandrasekaran, H. C. Krutzsch, D. D. Roberts, and R. Weissleder. Treatment of experimental brain tumors with trombospondin-1 derived peptides: an in vivo imaging study. Neoplasia 1(5):438–445 (1999).
T. Vogel, N. H. Guo, H. C. Krutzsch, D. A. Blake, J. Hartman, S. Mendelovitz, A. Panet, and D. D. Roberts. Modulation of endothelial cell proliferation, adhesion, and motility by recombinant heparin binding domain and synthetic peptides from the type I repeats of thrombospondin. J. Cell Biochem. 53(1):74–84 (1993).
J. M. Harris and R. B. Chess. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug. Discov. 2(3):214–221 (2003).
D. Oupicky, M. Ogris, and L. W. Seymour. Development of long-circulating polyelectrolyte complexes for systemic delivery of genes. J. Drug Target 10(2):93–98 (2002).
D. B. Kirpotin, D. C. Drummond, Y. Shao, M. R. Shalaby, K. L. Hong, U. B. Nielsen, J. D. Marks, C. C. Benz, and J. W. Park. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 66(13):6732–6740 (2006).
N. Maeda, S. Miyazawa, K. Shimizu, T. Asai, S. Yonezawa, S. Kitazawa, Y. Namba, H. Tsukada, and N. Oku. Enhancement of anticancer activity in antineovascular therapy is based on the intratumoral distribution of the active targeting carrier for anticancer drugs. Biol. Pharm. Bull. 29(9):1936–1940 (2006).
K. Vuu, J. W. Xie, M. A. McDonald, M. Bernardo, F. Hunter, Y. T. Zhang, K. Li, M. Bednarski, and S. Guccione. Gadolinium–rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging. Bioconjug. Chem. 16(4):995–999 (2005).
C. Marty, C. Meylan, H. Schott, K. Ballmer-Hofer, and R. A. Schwendener. Enhanced heparan sulfate proteoglycan-mediated uptake of cell-penetrating peptide-modified liposomes. Cell. Mol. Life Sci. 61(14):1785–1794 (2004).
Z. Cheng, J. Levi, Z. M. Xiong, O. Gheysens, S. Keren, X. Y., Chen, and S. S Gambhir. Near-infrared fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and living mice. Bioconjug. Chem. 17(3):662–669 (2006).
V. Ntziachristos, C. Bremer, and R. Weissleder. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur. Radiol. 13(1):195–208 (2003).
S. Achilefu. Lighting up tumors with receptor-specific optical molecular probes. Technol. Cancer Res. Treat. 3(4):393–409 (2004).
U. Mahmood and R. Weissleder. Near-infrared optical imaging of proteases in cancer. Mol. Cancer Ther. 2(5):489–496 (2003).
E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel. Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents. Curr. Opin. Chem. Biol. 6(5):642–650 (2002).
K. A. Kelly, J. R. Allport, A. Tsourkas, V. R. Shinde-Patil, L. Josephson, and R. Weissleder. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ. Res. 96(3):327–336 (2005).
X. Montet, M. Funovics, K. Montet-Abou, R. Weissleder, and L. Josephson. Multivalent effects of RGD peptides obtained by nanoparticle display. J. Med. Chem. 49(20):6087–6093 (2006).
D. E. Owens and N. A. Peppas. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307(1):93–102 (2006).
P. R. Dash, M. L. Read, L. B. Barrett, M. Wolfert, and L. W. Seymour. Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery. Gene Ther. 6(4):643–650 (1999).
D. Oupicky, R. C. Carlisle, and L. W Seymour. Triggered intracellular activation of disulfide crosslinked polyelectrolyte gene delivery complexes with extended systemic circulation in vivo. Gene Ther. 8(9):713–724 (2001).
S. M. Moghimi. Mechanisms regulating body distribution of nanospheres conditioned with pluronic and tetronic block copolymers. Adv. Drug Deliv. Rev. 16(2–3):183–193 (1995).
Acknowledgment
We acknowledge support of National Institutes of Health Grants 1R01EB002825-01 (J.M.D. and A.P.), support from the Department of Veterans Affairs (J.M.D.), the University of Texas MD Anderson Odyssey Fellowship, and the TN Law Foundation (S.M.H.). In addition we would like to thank the Vanderbilt Institute for Nanoscale Science and Engineering (VINSE) for use of the Malvern ZetaSizer Nano ZS.
Author information
Authors and Affiliations
Corresponding author
Additional information
An erratum to this article can be found at http://dx.doi.org/10.1007/s11095-008-9623-2
Rights and permissions
About this article
Cite this article
Hartig, S.M., Greene, R.R., Dikov, M.M. et al. Multifunctional Nanoparticulate Polyelectrolyte Complexes. Pharm Res 24, 2353–2369 (2007). https://doi.org/10.1007/s11095-007-9459-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11095-007-9459-1