Abstract
Studies such as Dube et al. (Topology Appl. 160(18):2454–2464 2013), Georgiou et al. (Algebra Universalis 80(2):16, 2019), Iliadis (2005; Topology Appl. 179, 99–110, 2015; Topology Appl. 201, 92–109, 2016) focus on the notion of saturated class of spaces and frames and the existence of universal elements in such classes. Recently, the notion of dimension for frames has been combined with this universality property (Georgiou et al., Algebra Universalis 80(2):16, 2019; Iliadis, Topology Appl. 201:92–109, 2016). In this paper we study such a property, combining it with the notion of the covering dimension dim for frames (Charalambous, J. London Math. Soc. 8(2):149–160, 1974). We define the base dimension like-function of the type dim for frames and, based on the notion of the saturated class of bases, which is inserted and studied in Georgiou et al. (Order 37:427–444, 2020), we prove that in a class of bases which is characterized by this dimension there exist universal elements. Also, we study the notion of saturated class of frames, which is inserted in Georgiou et al. (Algebra Universalis 80(2):16, 2019), proving that in classes of frames which are determined by the covering dimension dim there exist universal elements.
Similar content being viewed by others
Data Availability
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
References
Banaschewski, B., Gilmour, G.: Stone-Čech compactification and dimension theory for regular σ-frames. J. London Math. Soc. 39(2), 1–8 (1989)
Banaschewski, B.: Universal Zero-Dimensional Compactifications. Categorical Topology and its Relation to Analysis, Algebra and Combinatorics (Prague, 1988), pp 257–269. World Sci. Publ., Teaneck (1989)
Brijlall, D., Baboolal, D.: Some aspects of dimension theory of frames. Indian J. Pure Appl. Math. 39(5), 375–402 (2008)
Brijlall, D., Baboolal, D.: The Katětov-Morita theorem for the dimension of metric frames. Indian J. Pure Appl. Math. 41(3), 535–553 (2010)
Charalambous, M. G.: Dimension theory of σ-frames. J. London Math. Soc. 8(2), 149–160 (1974)
Charalambous, M. G.: The dimension of paracompact normal κ-frames. Topology Proc. 20, 49–66 (1995)
Charalambous, M. G.: Dimension Theory, a Selection of Theorems and Counterexamples Atlantis Studies in Mathematics, vol. 7. Springer International Publishing, Switzerland (2019)
Dube, T., Iliadis, S., van Mill, J., Naidoo, I.: Universal frames. Topology Appl. 160(18), 2454–2464 (2013)
Engelking, R.: Theory of dimensions, finite and infinite. Sigma Series in Pure Mathematics 10 Lemgo (1995)
Español, L., Gutiérrez García, J., Kubiak, T.: Separating families of locale maps and localic embeddings. Algebra Universalis 67(2), 105–112 (2012)
Georgiou, D., Iliadis, S., Megaritis, A., Sereti, F.: Small inductive dimension and universality on frames. Algebra Universalis 80(2), 16 (2019). Art. 21
Georgiou, D., Iliadis, S., Megaritis, A., Sereti, F.: Universality property and dimension for frames. Order 37, 427–444 (2020)
Georgiou, D., Kougias, I., Megaritis, A., Prinos, G., Sereti, F.: A study of a new dimension for frames. Topology Appl. 275, 106995 (2020)
Gevorgyan, P. S., Iliadis, S. D., Sadovnichy, Y.V.: Universality on frames. Topology Appl. 220, 173–188 (2017)
Iliadis, S. D.: Universal spaces and mappings North-Holland mathematics studies, vol. 198. Elsevier Science B.V., Amsterdam (2005)
Iliadis, S. D.: Universal regular and completely regular frames. Topology Appl. 179, 99–110 (2015)
Iliadis, S. D.: Dimension and universality on frames. Topology Appl. 201, 92–109 (2016)
Isbell, J. R.: Graduation and dimension in locales, Aspects of topology, 195–210. London Math. Soc. Lecture Note Ser. 93. Cambridge University Press, Cambridge (1985)
Liu, Y.-M., Luo, M-K.: Fuzzy Topology Advances in Fuzzy Systems – Applications and Theory, vol. 9. World Scientific Publishing Co., Inc., River Edge (1997)
Pears, A. R.: Dimension Theory of General Spaces. Cambridge University Press, Cambridge (1975)
Picado, J., Pultr, A.: Frames and Locales, Topology Without Points. Frontiers in Mathematics. Birkhäuser/Springer, Basel (2012)
Pultr, A., Tozzi, A.: Equotionally closed subframes and represetations of quotient spaces. Cahiers Topologie géom Différentielle Catég. 34(3), 167–183 (1993)
Sancho de Salas, J. B., Sancho de Salas, M. T.: Dimension of distributive lattices and universal spaces. Topology Appl. 42(1), 25–36 (1991)
Acknowledgments
The authors would like to thank the referee for the careful reading of the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Dube, T., Georgiou, D., Megaritis, A. et al. Covering Dimension and Universality Property on Frames. Order 39, 187–208 (2022). https://doi.org/10.1007/s11083-021-09561-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11083-021-09561-8