[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Hierarchy of Chains Embeddable into the Lexicographic Power \(\boldsymbol{({\mathbb{R}}^\omega,\prec_{\rm lex})}\)

  • Published:
Order Aims and scope Submit manuscript

Abstract

A hierarchy of chains is a transfinite sequence of linear orderings such that each chain in the sequence order-embeds into all chains following it but not in those preceding it. We construct a c  + -long hierarchy of chains that order-embed into the lexicographic power \(({\mathbb{R}}^\omega,\prec_{\rm lex})\). Each linear ordering L in this hierarchy is such that there exists a tree representation of L, which is an ℝ-branching tree with no infinite branches. The existence of such a hierarchy sheds some light on the hidden complexity of \(({\mathbb{R}}^\omega,\prec_{\rm lex})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caserta, A., Giarlotta, A., Watson, S.: Debreu-like properties of utility representations. J. Math. Econ. 44, 1161–1179 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chipman, J.P.: On the lexicographic representations of preference orderings. In: Chipman, J.S., Hurwicz, L., Richter, M., Sonnenschein, H.F. (eds.) Preference, Utility and Demand, pp. 276–288. Harcourt Brace and Jovanovich, New York (1971)

    Google Scholar 

  3. Fleischer, I.: Embedding linearly ordered sets in real lexicographic products. Fundam. Math. 49, 147–150 (1961)

    MathSciNet  MATH  Google Scholar 

  4. Giarlotta, A.: Lexicographic products of linear orderings. Ph.D. dissertation, University of Illinois at Urbana-Champaign, Urbana (2004)

  5. Giarlotta, A.: The representability number of a chain. Topol. its Appl. 150, 157–177 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Harzheim, E.: Einbettung totalgeordnete mengen in lexicographische produkte. Math. Ann. 170, 245–252 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  7. Herden, G., Mehta, G.B.: The Debreu Gap Lemma and some generalizations. J. Math. Econ. 40, 747–769 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Holland, W.C., Kuhlmann, S., McCleary, S.: Lexicographic exponentiation of chains. J. Symb. Log. 70, 389–409 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Knoblauch, V.: Lexicographic orders and preference representation. J. Math. Econ. 34, 255–267 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kuhlmann, S.: Isomorphisms of lexicographic powers of the reals. Proc. Am. Math. Soc. 123/9, 2657–2662 (1995)

    Article  MathSciNet  Google Scholar 

  11. Kunen, K.: Set Theory. An Introduction to Independence Proofs. North-Holland, Amsterdam (1980)

    MATH  Google Scholar 

  12. Mitchell, B.: Theory of Categories. Academic Press, New York (1965)

    MATH  Google Scholar 

  13. Rosenstein, J.G.: Linear Orderings. Academic Press, New York (1982)

    MATH  Google Scholar 

  14. Todorčević, S.: Trees and linearly ordered sets. In: Kunen, K., Vaughan, J. (eds.) Handbook of Set Theoretic Topology, pp. 235–293. North-Holland, Amsterdam (1984)

    Google Scholar 

  15. Wakker, P.: Continuity of preference relations for separable topologies. Int. Econ. Rev. 29, 105–110 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfio Giarlotta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giarlotta, A., Watson, S. A Hierarchy of Chains Embeddable into the Lexicographic Power \(\boldsymbol{({\mathbb{R}}^\omega,\prec_{\rm lex})}\) . Order 30, 463–485 (2013). https://doi.org/10.1007/s11083-012-9256-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-012-9256-2

Keywords

Mathematics Subject Classifications (2010)

Navigation