[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Orders on Subsets Rationalised by Abstract Convex Geometries

  • Published:
Order Aims and scope Submit manuscript

Abstract

We find conditions on the order on subsets of a finite set which are necessary and sufficient for the relative ranking of any two subsets in this order to be determined by their extreme elements relative to an abstract convex geometry. It turns out that this question is closely related to the rationalisability of path independent choice functions by hyper-relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizerman, M.A., Malishevski, A.V.: General theory of best variants choice: some aspects. IEEE Trans. Automat. Contr. 26, 1030–1041 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ando, K.: Extreme point axioms for closure spaces. Discrete Math. 306, 3181–3188 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barbera, S., Bossert, W., Pattanaik, P.K.: Ranking sets of objects. In: Barbera, S., Hammond, P., Seidl, C. (eds.) The Handbook of Utility Theory, vol. 2, (chap. 17). Springer, New York (2004)

    Google Scholar 

  4. Bossert, W., Slinko, A.: Relative uncertainty aversion and additively representable set rankings. Int. J. Econ. Theory 2, 105–122 (2006)

    Article  Google Scholar 

  5. Danilov, V.I., Koshevoy, G.A.: Mathematics of Plott choice functions. Math. Soc. Sci. 49, 245–272 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Edelman, P.H., Jamison, R.E.: The theory of convex geometries. Geom. Dedic. 19, 247–270 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kannai, Y., Peleg, B.: A note on the extension of an order on a set to the power set. J. Econ. Theory 32, 172–175 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Koshevoy, G.A.: Choice functions and abstract convex geometries. Math. Soc. Sci. 38, 35–44 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Nehring, K.: Rational choice and revealed preference without binariness. Soc. Choice Welf. 14, 403–425 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Plott C.R.: Path independence, rationality and social choice. Econometrica 41, 1075–1091 (1973)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadii Slinko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bossert, W., Ryan, M.J. & Slinko, A. Orders on Subsets Rationalised by Abstract Convex Geometries. Order 26, 237–244 (2009). https://doi.org/10.1007/s11083-009-9121-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-009-9121-0

Keywords

JEL Classification

Navigation