[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Measurement of optical fiber sensors for intrusion detection and warning systems fortified with intelligent false alarm suppression

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This research explores innovations in the measurement of optical fiber sensors for intrusion detection, focusing on mitigating false alarms through an intelligent framework. The sensing technique involves tracking light scattered by nanoparticles, utilizing backscattering illustrated by Rayleigh’s backscattering. The study integrates parametric intrusion detection and warning system (PIDWS) with intelligent false alarm suppression and minimization techniques, using FFT for efficient detection. A hybrid approach involving neural networks is proposed for reducing false alarms in dynamic network settings. The research emphasizes the intersection of the Internet of Things (IoT) and various intrusion detection systems for long-distance data transfer. The design of the PIDWS is detailed, highlighting efforts to achieve high sensitivity with FFT utilization. Results are showcased through a waterfall, illustrating real-time situations. The fiber Health Report, generated by fiber OTDR, provides insights into optical fiber conditions. The activity detector algorithm is presented as a flexible and robust detection method. In summary, the research contributes valuable insights into advancing optical fiber-based intrusion detection systems and minimizing false alarms. The research is applicable in avoiding intruders in oil pipelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data supporting the findings in this work are available from the corresponding author with a reasonable request.

References

  • Abdallah, A., Fouad, M.M., Ahmed, H.N.: Low-cost real-time fiber optic sensor for intrusion detection. Sens. Rev. 42(1), 89–101 (2022). https://doi.org/10.1108/SR-03-2021-0090

    Article  Google Scholar 

  • Afroozeh, A., Zeinali, B.: Improving the sensitivity of new passive optical fiber ring sensor based on meta-dielectric materials. Opt. Fiber Technol. 68, 102797 (2022). https://doi.org/10.1016/J.YOFTE.2021.102797

    Article  Google Scholar 

  • Al-Mamory, S.O., Zhang, H.: Ids alerts correlation using grammar-based approach. J. Comput. Virol. 28(3), 271–282 (2009)

    Article  Google Scholar 

  • Axelsson, S.: The base-rate fallacy and its implications for the di_culty of intrusion detection. In RAID '99: Proceedings of the 2nd International Symposium on Recent Advances in Intrusion Detection, pp. 1–7. Lecture Notes in Computer Science (1999)

  • Bolzoni, D., Bruno, C., Sandro, E.: ATLANTIDES: an architecture for alert veri_cation in network intrusion detection systems. In LISA'07: Proceedings of the 21st Conference on Large Installation System Administration Conference, pp. 1–12. USENIX Association (2007)

  • Brugger, S.T., Chow, J.: An assessment of the darpa ids evaluation dataset using snort (2005). Technical report, http://www.cs.ucdavis.edu/research/tech-reports/2007/CSE-2007-1.pdf, University of California at Davis (2007)

  • Cao, W., Cheng, G., Xing, G., Liu, B.: Near-field target localisation based on the distributed acoustic sensing optical fibre in shallow water. Opt. Fiber Technol. 75, 103198 (2023). https://doi.org/10.1016/J.YOFTE.2022.103198

    Article  Google Scholar 

  • Chen, H., Wong, R.C.K., Park, S., Hugo, R.: An AI-based monitoring system for external disturbance detection and classification near a buried pipeline. Mech. Syst. Signal Process. 196, 110346 (2023). https://doi.org/10.1016/J.YMSSP.2023.110346

    Article  Google Scholar 

  • Cuppens, F., Autrel, F., Miege, A., Benferhat, S., Ege, R.M.: Correlation in an intrusion detection process. In SECI '02: Proceedings of the 2002 International Conference on Security of Communications on the Internet, pp. 153–183. INRIA (2002)

  • Fernández, E.A., Torres, J.J.G., Soto, A.M.C., Gonzalez, N.G.: Radio-over-fiber signal demodulation in the presence of non-Gaussian distortions based on subregion constellation processing. Opt. Fiber Technol. 53, 102062 (2019). https://doi.org/10.1016/J.YOFTE.2019.102062

    Article  Google Scholar 

  • Fizza, K., Jayaraman, P.P., Banerjee, A., Auluck, N., Ranjan, R.: IoT-QWatch: a novel framework to support the development of quality-aware autonomic IoT applications. IEEE Internet of Things J. 10(20), 17666–17679 (2023). https://doi.org/10.1109/JIOT.2023.3278411

    Article  Google Scholar 

  • Gagnon, F., Massicotte, F., Esfandiari, B.: Using contextual information for ids alarm classi_cation (extended abstract). In DIMVA '09: Proceedings of the 6th International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, pp. 147–156. Lecture Notes in Computer Science (2009)

  • Gao, Q., Li, Z., Zhao, W., Li, G., Ju, P., Gao, W., Dang, W.: Spectral beam combining of fiber lasers with 32 channels. Opt. Fiber Technol. 78, 103311 (2023). https://doi.org/10.1016/j.yofte.2023.103311

    Article  Google Scholar 

  • Hajiheidari, S., Wakil, K., Badri, M., Navimipour, N.J.: Intrusion detection systems in the Internet of Things: a comprehensive investigation. Comput. Netw. 160, 165–191 (2019). https://doi.org/10.1016/j.comnet.2019.05.014

    Article  Google Scholar 

  • Hsieh, H., Hsu, K.S., Jong, T.L., Wang, L.: Multi-zone fiber-optic intrusion detection system with active unbalanced Michelson interferometer used for security of each defended zone. IEEE Sens. J. 20(3), 1607–1618 (2020). https://doi.org/10.1109/JSEN.2019.2946904

    Article  ADS  Google Scholar 

  • Hubballi, N., Suryanarayanan, V.: False alarm minimization techniques in signature-based intrusion detection systems: a survey. Comput. Commun. 49, 1–17 (2014). https://doi.org/10.1016/j.comcom.2014.04.012

    Article  Google Scholar 

  • Hubballi, N., Biswas, S., Nandi, S.: Network speci_c false alarm reduction in intrusion detection. Secur. Commun. Netw. 4, 1339–1349 (2011)

    Article  Google Scholar 

  • Iida, D., Honda, N., Oshida, H.: Advances in distributed vibration sensing for optical communication fiber state visualization. Opt. Fiber Technol. 57, 102263 (2020). https://doi.org/10.1016/j.yofte.2020.102263

    Article  Google Scholar 

  • Junifer networks. Accurate attack detection. In Junifer Networks Datasheet, pp. 1–6 (2005)

  • Khraisat, A., Alazab, A.: A critical review of intrusion detection systems in the internet of things: techniques, deployment strategy, validation strategy, attacks, public datasets and challenges. Cybersecurity 4(1), 1–27 (2021). https://doi.org/10.1186/s42400-021-00077-7

    Article  Google Scholar 

  • Krishnamurthy, S., Sen, A.: Stateful intrusion detection system (sids). In ICIW '01: Proceedings of the 2nd IEE conference on Information Warfare and Security, pp. 1–10. IEEE (2001)

  • Li, Z., Xia, G., Gao, H., Tang, Y., Chen, Y., Liu, B., Jiang, J.: Netshield: massive semantics-based vulnerability signature matching for high-speed networks. In SIGCOMM '10: Proceedings of the 40th ACM SIGCOMM conference, pp. 279–290. ACM (2010)

  • Li, J., Wang, Y., Liu, X., Bai, Q., Jin, B.: SNR improvement for Φ-OTDR with sparse representation denoising method. Opt. Fiber Technol. 76, 103231 (2023). https://doi.org/10.1016/J.YOFTE.2023.103231

    Article  Google Scholar 

  • Lin, Y.H., Zheng, B.H., Wang, L.: Cascaded fiber-optic interferometers for multi-perimeter-zone intrusion detection with a single fiber used for each defended zone. IEEE Sens. J. 21(9), 10685–10694 (2021). https://doi.org/10.1109/JSEN.2021.3059645

    Article  ADS  Google Scholar 

  • Lipmann, R., Haines, J.W., Fried, D.J., Kobra, J., Das, K.: The 1999 darpa off-line intrusion detection eveluation. Comput. Netw. 34(4), 579–595 (2000)

    Article  Google Scholar 

  • Lu, X., Thomas, P.J.: Phase error evaluation via differentiation and cross-multiplication demodulation in phase-sensitive optical time-domain reflectometry. Photonics 10(5), 514 (2023). https://doi.org/10.3390/photonics10050514

    Article  Google Scholar 

  • Lu, L., Yong, M., Wang, Q., Bu, X., Gao, Q.: A hybrid distributed optical fiber vibration and temperature sensor based on optical Rayleigh and Raman scattering. Opt. Commun. 529, 129096 (2023). https://doi.org/10.1016/J.OPTCOM.2022.129096

    Article  Google Scholar 

  • Luo, L., Wang, W., Yu, H., Chen, X., Bao, S.: Abnormal event monitoring of underground pipelines using a distributed fiber-optic vibration sensing system. Meas. J. Int. Meas. Confed. 221, 113488 (2023). https://doi.org/10.1016/j.measurement.2023.113488

    Article  Google Scholar 

  • Mohamed, A.B., Idris, N.B., Shanmugum, B.: Article: an operational framework for alert correlation using a novel clustering approach. Int. J. Comput. Appl. 54(12), 23–28 (2012)

    Google Scholar 

  • Mohammadi, M., Olyaee, S., Seifouri, M.: Design and optimization of passive optical gyroscope, based on nanostructures ring resonators for rotation sensing applications. Opt. Quantum Electron. 54(11), 696 (2022)

    Article  Google Scholar 

  • Moustafa, N., Koroniotis, N., Keshk, M., Zomaya, A.Y., Tari, Z.: Explainable intrusion detection for cyber defences in the internet of things: opportunities and solutions. IEEE Commun. Surv. Tutor. 25(3), 1775–1807 (2023). https://doi.org/10.1109/COMST.2023.3280465

    Article  Google Scholar 

  • Okamoto, T., Iida, D., Oshida, H.: Vibration-induced beat frequency offset compensation in distributed acoustic sensing based on optical frequency domain reflectometry. J. Light. Technol. 37(18), 4896–4901 (2019). https://doi.org/10.1109/JLT.2019.2933643

    Article  ADS  Google Scholar 

  • Paxson, V.: Bro: a system for detecting network intruders in real-time. Comput. Netw. 31(23–24), 2435–2463 (1999)

    Article  Google Scholar 

  • Peng, Z., Jian, J., Wen, H., Gribok, A., Wang, M., Liu, H., Huang, S., Mao, Z.-H., Chen, K.P.: Distributed fiber sensor and machine learning data analytics for pipeline protection against extrinsic intrusions and intrinsic corrosions. Opt. Express 28(19), 27277–27292 (2020). https://doi.org/10.1364/oe.397509

    Article  ADS  Google Scholar 

  • Pietraszek, T.: Using adaptive alert classi_cation to reduce false positives in intrusion detection. In RAID'04: Proceedings of the 7th international conference on Recent advances in intrusion detection, pp. 102–124. Lecture Notes in Computer Science (2004)

  • Rao, Y., Wang, Z., Wu, H., Ran, Z., Han, B.: Recent advances in phase-sensitive optical time domain reflectometry (Ф-OTDR). Photonic Sens. 11(1), 1–30 (2021). https://doi.org/10.1007/s13320-021-0619-4

    Article  ADS  Google Scholar 

  • Salah, S., Maci Fernndez, G., Daz Verdejo, J.E.: A model-based survey of alert correlation techniques. Comput. Netw. 57(5), 1289–1317 (2013)

    Article  Google Scholar 

  • Sanchez-Lara, R., Ceballos-Herrera, D., Vazquez-Avila, J.L., de la Cruz-May, L., Jauregui-Vazquez, D., Offerhaus, H.L., Alvarez-Chavez, J.A.: Effect of temperature profiles on Yb3+-doped fiber amplifiers. Opt. Fiber Technol. 78, 103317 (2023). https://doi.org/10.1016/j.yofte.2023.103317

    Article  Google Scholar 

  • Sheng, Z., Qu, D., Zhan, Y., Yang, D.: The fast detection and identification algorithm of optical fiber intrusion signals. Algorithms 11(9), 129 (2018). https://doi.org/10.3390/a11090129

    Article  MathSciNet  Google Scholar 

  • Shur, M., Rudin, S., Rupper, G., Reed, M., Suarez, J.: Sub-terahertz testing of millimeter wave Monolithic and very large scale integrated circuits. Solid State Electron. 155, 44–48 (2019). https://doi.org/10.1016/J.SSE.2019.03.007

    Article  ADS  Google Scholar 

  • Sicari, S., Rizzardi, A., Grieco, L. A., & Coen-Porisini, A.: Security, privacy and trust in Internet of Things: The road ahead. Computer Networks, 76, 146–164 (2015). https://doi.org/10.1016/j.comnet.2014.11.008

  • Templeton, S., Levitt, K.: A requires/provides model for computer attacks. In NSPW '00: Proceedings of the 2000 workshop on New security paradigms, pp. 31–38. ACM (2000)

  • Thomas, C., Balakrishnan, N.: Improvement in intrusion detection with advances in sensor fusion. IEEE Trans. Inf. Forensics Secur. 4(3), 542–551 (2009). https://doi.org/10.1109/TIFS.2009.2026954

    Article  Google Scholar 

  • Tjhai, G.C., Papadaki, M., Furnell, S.M., Clarke1, N.L.: The problem of false alarms: Evaluation with snort and darpa 1999 dataset. In TrustBus ’99: Proceedings of the 13th USENIX System Administration Conference, pp. 139–150. Lecture Notes in Computer Science (2008)

  • Treinen, J.J., Thurimella, R.: Finding the needle: suppression of false alarms in large intrusion detection data sets. In CSE ’09: Proceedings of the 2009 International Conference on Computational Science and Engineering, pp. 237–244. IEEE Computer Society (2009)

  • Ullah, M.H., Gelli, G., Verde, F.: Visible light backscattering with applications to the Internet of Things: state-of-the-art, challenges, and opportunities. Internet of Things 22, 100768 (2023). https://doi.org/10.1016/J.IOT.2023.100768

    Article  Google Scholar 

  • Valeur, F., Vigna, G., Kruegel, C., Kemmerer, R.A.: A comprehensive approach to intrusion detection alert correlation. IEEE Trans. Dependable Secure Comput. 1(3), 146–169 (2004)

    Article  Google Scholar 

  • Vikram, A., Patel, S.K., Chaturvedi, A., Alsalman, O., Parmar, J.: Detecting accurate parametric intrusions using optical fiber sensors for long-distance data communication system. Opt. Fiber Technol. 80, 103453 (2023). https://doi.org/10.1016/J.YOFTE.2023.103453

    Article  Google Scholar 

  • Wang, Q., Han, L., Fan, X., Zhu, J.: Distributed fiber optic vibration sensor based on polarization fading model for gas pipeline leakage testing experiment. J. Low Freq. Noise Vib. Act. Control 37(3), 468–476 (2017). https://doi.org/10.1177/1461348417725949

    Article  Google Scholar 

  • Wang, Z., Lu, B., Ye, Q., Cai, H.: Recent progress in distributed fiber acoustic sensing with Φ-otdr. Sensors (switzerland) 20(22), 6594 (2020). https://doi.org/10.3390/s20226594

    Article  ADS  Google Scholar 

  • Wang, Z., Yang, J., Gu, J., Liu, Y., Lu, B., Ying, K., Ye, L., Ye, Q., Qu, R., Cai, H.: Practical performance enhancement of das by using dense multichannel signal integration. J. Lightwave Technol. 39(19), 6348–6354 (2021). https://doi.org/10.1109/JLT.2021.3098330

    Article  ADS  Google Scholar 

  • Wang, Q., Du, N.N., Zhao, W.M., Wang, L., Cong, X.W., Zhu, A.S., Qiu, F.M., Zhang, K.K.: Highly sensitive U-shaped optical fiber refractometer based on Bi2O2Se-assisted surface plasmon resonance. IEEE Trans. Instrum. Meas. 71, 1–8 (2022). https://doi.org/10.1109/TIM.2021.3129871

    Article  Google Scholar 

  • Wellbrock, G.A., Xia, T.J., Huang, M.F., Han, S., Chen, Y., Wang, T., Aono, Y.: Explore benefits of distributed fiber optic sensing for optical network service providers. J. Lightwave Technol. 41(12), 3758–3766 (2023). https://doi.org/10.1109/JLT.2023.3263795

    Article  ADS  Google Scholar 

  • Wijaya, H., Rajeev, P., Gad, E.: Distributed optical fibre sensor for infrastructure monitoring: field applications. Opt. Fiber Technol. 64, 102577 (2021). https://doi.org/10.1016/J.YOFTE.2021.102577

    Article  Google Scholar 

  • Xie, T., et al.: Distributed acoustic sensing (DAS) for geomechanics characterization: a concise review. In IOP Conference Series Earth Environmental Science, vol. 861, no. 4, (2021). https://doi.org/10.1088/1755-1315/861/4/042033.

  • Yang, N., Zhao, Y., Chen, J., Wang, F.: Real-time classification for Φ-OTDR vibration events in the case of small sample size datasets. Opt. Fiber Technol. 76, 103217 (2023). https://doi.org/10.1016/J.YOFTE.2022.103217

    Article  Google Scholar 

  • Yuan, H., et al.: An anti-noise composite optical fiber vibration sensing system. Opt. Lasers Eng. 139, 106483 (2021). https://doi.org/10.1016/J.OPTLASENG.2020.106483

    Article  Google Scholar 

  • Zeng, Q., Tao, J., Guo, S., Ge, H.: Target detection method based on optical fiber fence. J. Phys. Conf. Ser. 1237(2), 022149 (2019). https://doi.org/10.1088/1742-6596/1237/2/022149

    Article  Google Scholar 

  • Zhan, Y., Song, Z., Sun, Z., Yu, M., Guo, A., Feng, C., Zhong, J.: A distributed optical fiber sensor system for intrusion detection and location based on the phase-sensitive OTDR with remote pump EDFA. Optik 225, 165020 (2021). https://doi.org/10.1016/j.ijleo.2020.165020

    Article  ADS  Google Scholar 

  • Zhang, B., Zhao, Y., Rahman, S., Li, Y., Zhang, J.: Alarm classification prediction based on cross-layer artificial intelligence interaction in self-optimized optical networks (SOON). Opt. Fiber Technol. 57, 102251 (2020). https://doi.org/10.1016/J.YOFTE.2020.102251

    Article  Google Scholar 

  • Zhang, J., Wang, C., Chen, Y., Xiang, Y., Huang, T., Shum, P.P., Wu, Z.: Fiber structures and material science in optical fiber magnetic field sensors. Front. Optoelectron. 15(1), 34 (2022). https://doi.org/10.1007/s12200-022-00037-0

    Article  Google Scholar 

  • Zhang, W., Lang, X., Liu, X., Li, G., Singh, R., Zhang, B., Kumar, S.: Advances in tapered optical fiber sensor structures: from conventional to novel and emerging. Biosensors 13(6), 644 (2023). https://doi.org/10.20944/preprints202305.0684.v1

    Article  ADS  Google Scholar 

  • Zhou, J., Heckman, M., Reynolds, B., Carlson, A., Bishop, M.: Modeling network intrusion detection alerts for correlation. ACM Trans. Inf. Syst. Secur. 10(1), 4 (2007)

    Article  Google Scholar 

  • Zhu, K., et al.: Multipath distributed acoustic sensing system based on phase-sensitive optical time-domain reflectometry with frequency division multiplexing technique. Opt. Lasers Eng. 142, 106593 (2021). https://doi.org/10.1016/J.OPTLASENG.2021.106593

    Article  Google Scholar 

Download references

Acknowledgements

Researchers Supporting Project number (RSPD2024R654), King Saud University, Riyadh, Saudi Arabia. The authors are grateful to Indian Oil Corporation, India for the support extended during carrying out the Research Work.

Funding

Researchers Supporting Project number (RSPD2024R654), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, A.V and S.K.P.; methodology, A.V and S.K.P software, A.V investigation, A.V, S.K.P. and O.A; Formal Analysis, A.V, S.K.P. and O.A; writing—original draft preparation, A.V.; writing—review and editing, All Authors.; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Shobhit K. Patel.

Ethics declarations

Conflict of interest

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vikram, A., Patel, S.K. & Alsalman, O. Measurement of optical fiber sensors for intrusion detection and warning systems fortified with intelligent false alarm suppression. Opt Quant Electron 56, 939 (2024). https://doi.org/10.1007/s11082-024-06797-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06797-7

Keywords

Navigation