[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Passive walking biped robot model with flexible viscoelastic legs

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To simulate the complex human walking motion accurately, a suitable biped model has to be proposed that can significantly translate the compliance of biological structures. In this way, the simplest passive walking model is often used as a standard benchmark for making the bipedal locomotion so natural and energy efficient. This paper is devoted to a presentation of the application of internal damping mechanism to the mathematical description of the simplest passive walking model with flexible legs. This feature can be taken into account by using the viscoelastic legs, which are constituted by the Kelvin–Voigt rheological model. Then, the update of the impulsive hybrid nonlinear dynamics of the simplest passive walker is obtained based on the Euler–Bernoulli’s beam theory and using a combination of Lagrange mechanics and the assumed mode method, along with the precise boundary conditions. The main goal of this study is to develop a numerical procedure based on the new definition of the step function for enforcing the biped start walking from stable condition and walking continuously. In our previous work, it was shown that the period-one gait cycle can be produced by adding the proportional damping model with high damping ratio to the elastic legs. The present paper overcomes the practical limitations of this damping model and similarly demonstrates the stable period-one gait cycles for the viscoelastic legs. The study of the influence of various system parameters is carried out through bifurcation diagrams, highlighting the region of stable period-one gait cycles. Numerical simulations clearly prove that the overall effect of viscoelastic leg on the passive walking is efficient enough from the viewpoint of stability and energy dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. McGeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9(2), 62–68 (1990)

    Article  Google Scholar 

  2. Goswami, A., Thuilot, B., Espiau, B.: Compass-like biped robot. Part I: Stability and bifurcation of passive gaits, INRIA. Technical Report. 2996 (1996).

  3. Garcia, M., Chatterjee, A., Ruina, A., Coleman, M.: The simplest walking model: stability, complexity and scaling. J. Biomech. Eng. 120(2), 281–288 (1998)

    Article  Google Scholar 

  4. Garcia, M., Chatterjee, A., Ruina, A.: Efficiency speed and scaling of two-dimensional passive-dynamic walking. Int. J. Dyn. Stab. Syst. 15, 75–99 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goswami, A., Espiau, B., Keramane, A.: Limit cycles and their stability in a passive bipedal gait. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 246–51 (1996).

  6. Goswami, A., Thuilot, B., Espiau, B.: A study of the passive gait of a compass-like biped robot: symmetry and chaos. Int. J. Robot. Res. 17(12), 1282–1301 (1998)

    Article  Google Scholar 

  7. An, K., Chen, Q.: A passive dynamic walking model based on knee-bend behaviour: stability and adaptability for walking down steep slopes. Int. J. Adv. Robot. Syst. 10(365), 1–11 (2013)

    Google Scholar 

  8. Wisse, M., Schwab, A.L., Vander-Helm, F.C.T.: Passive dynamic walking model with upper body. Robotica 22(6), 681–688 (2004)

    Article  Google Scholar 

  9. Kwan, M., Hubbard, M.: Optimal foot shape for a passive dynamic biped. J. Theor. Biol. 248(2), 331–339 (2007)

    Article  MATH  Google Scholar 

  10. Jeon, Y., Park, Y.S., Park, Y: A study on stability of limit cycle walking model with feet: Parameter study, Int. J. Robot. Syst. 10(1): (2013).

  11. Sadeghian, H., Barkhordari, M.: Orbital analysis of passive dynamic bipeds; the effect of model parameters and stabilizing arm. J. Mech. Sci. 178 (2020).

  12. Safa, A.T., Saadat, M.G., Naraghi, M.: Passive dynamic of the simplest walking model: Replacing ramps with stairs. Mech. Mach. Theory. 42(10), 1314–1325 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Corral, E., Gómez, M.J., Castejon, C., Meneses, J., Gismeros, R.: Dynamic modeling of the dissipative contact and friction forces of a passive biped-walking robot. Appl. Sci. 10(7), 2342 (2020)

    Article  Google Scholar 

  14. Gritli, H., Khraeif, N., Belghith, S.: Period-three route to chaos induced by a cyclic-fold bifurcation in passive dynamic walking of a compass-gait biped robot. Commun. Nonlinear Sci. Numer. Simul. 17(11), 4356–4372 (2012)

    Article  MathSciNet  Google Scholar 

  15. Gritli, H., Khraief, N., Belghith, S.: Chaos control in passive walking dynamics of a compass-gait model. Commun. Nonlinear Sci. Numer. Simul. 18(8), 2048–2065 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gritli, H., Khraeif, N., Belghith, S.: OGY-based control of chaos in semi–passive dynamic walking of a torso-driven biped robot. Nonlinear Dyn. 79(2), 1363–1384 (2015)

    Article  MATH  Google Scholar 

  17. Gritli, H., Belghith, S.: Walking dynamics of the passive compass-gait model under OGY-based control: emergence of bifurcations and chaos. Commun. Nonlinear Sci. Numer. Simul. 47, 308–327 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gritli, H., Belghith, S.: Walking dynamics of the passive compass-gait model under OGY-based state-feedback control: Analysis of local bifurcations via the hybrid Poincaré map. Chaos Solitons Fractals 98, 72–87 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gritli, H., Belghith, S.: Displayed phenomena in the semi-passive torso-driven biped model under OGY-based control method: birth of a torus bifurcation. Appl. Math. Model 40(4), 2946–2967 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gritli, H., Belghith, S.: Diversity in the nonlinear dynamic behavior of a one degree-of-freedom impact mechanical oscillator under OGY-based state-feedback control law: Order, chaos and exhibition of the border-collision bifurcation. Mech. Mach. Theory. 124, 1–41 (2018)

    Article  Google Scholar 

  21. Gritli, H., Belghith, S.: Walking dynamics of the passive compass-gait model under OGY-based state-feedback control: Rise of the Neimark-Sacker bifurcation. Chaos Solitons Fractals 110, 158–168 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Znegui, W., Gritli, H., Belghith, S.: Stabilization of the passive walking dynamics of the compass-gait biped robot by developing the analytical expression of the controlled Poincaré map. Nonlinear Dyn. 101, 1061–1091 (2020)

    Article  MATH  Google Scholar 

  23. Znegui, W., Gritli, H., Belghith, S.: Design of an explicit expression of the Poincaré map for the passive dynamic walking of the compass-gait biped model. Chaos Solitons Fractals 130, 109436 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Znegui, W., Gritli, H., Belghith, S.: A new Poincaré map for investigating the complex walking behavior of the compass-gait biped robot. Appl. Math. Model 94, 534–557 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Added, E., Gritli, H., Belghith, S.: Further analysis of the passive dynamics of the compass biped walker and control of chaos via two trajectory tracking approaches, complexity (2021).

  26. Gritli, H., Khraeif, N., Belghith, S.: Complex walking behaviours, chaos and bifurcations, of a simple passive compass-gait biped model suffering from leg length asymmetry. Int. J. Simul. Process Model. (2018).

  27. Safa, A.T., Naraghi, M.: The role of walking surface in enhancing the stability of the simplest passive dynamic biped. Robotica 33(1), 195–207 (2015)

    Article  Google Scholar 

  28. Safa, A.T., Mohammadi, S., Hajmiri, S.E., Naraghi, M., Alasty, A.: How local slopes stabilize passive bipedal locomotion? Mech. Mach. Theory. 100, 63–82 (2016)

    Article  Google Scholar 

  29. Moghadam, S.M., Talarposhti, M.S., Niaty, A., Towhidkhah, F., Jafari, S.: The simple chaotic model of passive dynamic walking. Nonlinear Dyn. 93(3), 1183–1199 (2018)

    Article  Google Scholar 

  30. Beigzadeh, B., Razavi, S.A.: Dynamic walking analysis of an underactuated biped robot with asymmetric structure. Int. J. Humanoid Rob. (2021).

  31. Iqbal, S., Zang, X.Z., Zhu, Y.H., Zhao, J.: Bifurcations and chaos in passive dynamic walking: a review. Robot. Auton. Syst. 62(6), 889–909 (2014)

    Article  Google Scholar 

  32. Gupta, S., Kumar, A.: A brief review of dynamics and control of under-actuated biped robots. Int. J. Adv. Robot. Syst. 31(12), 607–623 (2017)

    Article  Google Scholar 

  33. Li, Z., Tsagarakis, N.G., Caldwell, D.G.: Walking pattern generation for a humanoid robot with compliant joints, pp. 1–14 (2013).

  34. Wang, Q., Huang, Y., Wang, L.: Passive dynamic walking with flat feet and ankle compliance. Robotica 28(3), 413–425 (2010)

    Article  Google Scholar 

  35. Narukawa, T., Takahashi, M., Yoshida, K.: Efficient walking with optimization for a planar biped walker with a torso by hip actuators and springs. Robotica 29(4), 641–648 (2011)

    Article  Google Scholar 

  36. Kerimoglu, D., Morgül, Ö., Saranli, U.: Stability and control of planar compass gait walking with series-elastic ankle actuation. Trans. Inst. Measur. Control 39(3), 312–323 (2017)

    Article  Google Scholar 

  37. Deng, K., Zhao, M., Xu, W.: Passive dynamic walking with a torso coupled via torsional springs. Int. J. Humanoid Rob. 14(01), 1650024-1-1650024–12 (2017)

    Google Scholar 

  38. Wu, Y., Yao, D., Xiao, X.: Optimal design for flexible passive biped walker based on chaotic particle swarm optimization. J. Electr. Eng. Technol. 13(6), 2493–2503 (2018)

    Google Scholar 

  39. Fathizadeh, M., Mohammadi, H., Taghvaei, S.: A modified passive walking biped model with two feasible switching patterns of motion to resemble multi-pattern human walking. Chaos Solit. Fract. 127, 83–95 (2019)

    Article  MathSciNet  Google Scholar 

  40. Shen, Y., Kuang, Y.: Transient contact-impact behavior for passive walking of compliant bipedal robots. Extreme Mech. Lett. 42, 101076 (2021)

    Article  Google Scholar 

  41. Safartoobi, M., Dardel, M., Mohammadi-Daniali, H.: Gait cycles of passive walking biped robot model with flexible legs. Mech. Mach. Theory. 159, 104292 (2021)

    Article  Google Scholar 

  42. Korayem, M.H., Dehkordi, S.F.: Derivation of motion equation for mobile manipulator with viscoelastic links and revolute–prismatic flexible joints via recursive Gibbs-Appell formulations. Robot. Auton. Syst. 103, 175–198 (2018)

    Article  Google Scholar 

  43. Doosti, P., Mahjoob, M.J., Dadashzadeh, B.: Finite-time control strategy for the running of a telescopic leg biped robot. J Brazil Soc. Mech. Sci. Eng. 41(4), 196 (2019)

    Article  Google Scholar 

  44. Rao, S.S.: Vibration of Continuous Systems. John Wiley & Sons, New Jersey (2007)

    Google Scholar 

  45. Muscolo, G.G., Recchiuto, C.T.: Flexible structure and wheeled feet to simplify biped locomotion of humanoid robots. Int. J. Humanoid Rob. 13(04), 1650030-1-1650030–26 (2016)

    Google Scholar 

  46. Dardel, M., Safartoobi, M., Pashaei, M.H., et al.: Finite difference method to find period-one gait cycles of simple passive walkers. Commun. Nonlinear Sci. Numer. Simul. 20(1), 79–97 (2015)

    Article  Google Scholar 

  47. Obayashi, I., Aoi, S., Tsuchiya, K., Kokubu, H.: Formation mechanism of a basin of attraction for passive dynamic walking induced by intrinsic hyperbolicity. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 472(2190), 1–19 (2016)

    MathSciNet  MATH  Google Scholar 

  48. McGeer, T.: Passive dynamic biped catalogue. In Chatila, R., Hirzinger, G. (eds.) Proceedings of Experimental Robotics II: The 2nd International Symposium, pp. 465–490. Springer, Berlin (1992).

  49. Safartoobi, M., Dardel, M., Ghasemi, M.H., Daniali, H.M.: Determination of the initial conditions by solving boundary value problem method for period-one walking of a passive biped walking robots. Robotica 35(1), 166–188 (2017)

    Article  Google Scholar 

  50. Added, E., Gritli, H., Belghith, S.: Additional complex behaviors, bifurcations and chaos, in the passive walk of the compass-type bipedal robot. IFAC-PapersOnLine Ser. 54(17), 111–116 (2021)

    Article  Google Scholar 

  51. Added, E., Gritli, H.: Birth of the Neimark–Sacker bifurcation for the passive compass-gait walker. In: Lacarbonara, W., Balachandran, B., Leamy, M.J., Ma, J., Tenreiro Machado, J.A., Stepan, G. (eds) Advances in Nonlinear Dynamics. NODYCON Conference Proceedings Series. Springer, Cham (2022).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Dardel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Definition of the normalized matrices of the flexible model with viscoelastic legs

Appendix A: Definition of the normalized matrices of the flexible model with viscoelastic legs

In this appendix, we derive the upper triangular elements of the symmetric inertia matrix and the right-hand side vector in Eq. (20) for the first mode shape (\(n=1\)) as following:

$$ \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {M_{11} } \\ \ldots \\ \end{array} } & {\begin{array}{*{20}c} {M_{12} } \\ {M_{22} } \\ \end{array} } \\ \end{array} } & {\begin{array}{*{20}c} {\begin{array}{*{20}c} {M_{13} } \\ {M_{23} } \\ \end{array} } & {\begin{array}{*{20}c} {M_{14} } \\ {M_{24} } \\ \end{array} } \\ \end{array} } \\ {\begin{array}{*{20}c} \ldots & \ldots \\ \end{array} } & {\begin{array}{*{20}c} {\begin{array}{*{20}c} {M_{33} } \\ \ldots \\ \end{array} } & {\begin{array}{*{20}c} {M_{34} } \\ {M_{44} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\ddot{\theta }} \\ {\ddot{v}_{1} } \\ \end{array} } \\ {\begin{array}{*{20}c} {\ddot{\phi }} \\ {\ddot{p}_{1} } \\ \end{array} } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {F_{1} \left( {{\varvec{q}},\dot{\user2{q}}} \right)} \\ {F_{2} \left( {{\varvec{q}},\dot{\user2{q}}} \right)} \\ \end{array} } \\ {\begin{array}{*{20}c} {F_{3} \left( {{\varvec{q}},\dot{\user2{q}}} \right)} \\ {F_{4} \left( {{\varvec{q}},\dot{\user2{q}}} \right)} \\ \end{array} } \\ \end{array} } \right\} + \left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {F_{{{\varvec{v}}1}} \left( {\dot{\user2{q}}} \right)} \\ {F_{{{\varvec{v}}2}} \left( {\dot{\user2{q}}} \right)} \\ \end{array} } \\ {\begin{array}{*{20}c} {F_{{{\varvec{v}}3}} \left( {\dot{\user2{q}}} \right)} \\ {F_{{{\varvec{v}}4}} \left( {\dot{\user2{q}}} \right)} \\ \end{array} } \\ \end{array} } \right\} $$
$$ \begin{aligned} M_{11} = & \frac{5}{3} + \overline{v}_{1}^{2} \left( \tau \right)\left( {\int\limits_{0}^{1} {\varphi_{1}^{2} \left( {\overline{x}_{1} } \right)} d\overline{x}_{1} + \varphi_{1}^{2} \left( 1 \right)} \right) \\ & + \overline{p}_{1}^{2} \left( \tau \right)\int\limits_{0}^{1} {\psi_{1}^{2} \left( {\overline{x}_{2} } \right)} d\overline{x}_{2} + m_{H} \left( {1 + \overline{v}_{1}^{2} \left( \tau \right)\varphi_{1}^{2} \left( 1 \right)} \right) \\ \end{aligned} $$
$$ M_{12} = - \left( {\mathop \int \limits_{0}^{1} \overline{x}_{1} \varphi_{1} \left( {\overline{x}_{1} } \right)d\overline{x}_{1} + \left( {1 + m_{H} } \right)\varphi_{1} \left( 1 \right)} \right) $$
$$ M_{13} = - \left( {\frac{1}{3} + \overline{p}_{1}^{2} \left( \tau \right)\mathop \int \limits_{0}^{1} \psi_{1}^{2} \left( {\overline{x}_{2} } \right)d\overline{x}_{2} } \right) ,\quad M_{14} = - \mathop \int \limits_{0}^{1} \overline{x}_{2} \psi_{1} \left( {\overline{x}_{2} } \right)d\overline{x}_{2} $$
$$ \begin{gathered} M_{22} = \left( {\mathop \int \limits_{0}^{1} \varphi_{1}^{2} \left( {\overline{x}_{1} } \right)d\overline{x}_{1} + \left( {1 + m_{H} } \right)\varphi_{1}^{2} \left( 1 \right)} \right) \hfill \\ M_{23} = 0,\quad M_{24} = 0 \hfill \\ \end{gathered} $$
$$ \begin{gathered} M_{33} = \left( {\frac{1}{3} + \overline{p}_{1}^{2} \left( \tau \right)\mathop \int \limits_{0}^{1} \psi_{1}^{2} \left( {\overline{x}_{2} } \right)d\overline{x}_{2} } \right),\quad M_{34} = \mathop \int \limits_{0}^{1} \overline{x}_{2} \psi_{1} \left( {\overline{x}_{2} } \right)d\overline{x}_{2} \hfill \\ M_{44} = \mathop \int \limits_{0}^{1} \psi_{1}^{2} \left( {\overline{x}_{2} } \right)d\overline{x}_{2} \hfill \\ \end{gathered} $$
$$ \begin{aligned} F_{1} \left( {{\varvec{q}},\dot{\user2{q}}} \right) = & - 2\dot{\overline{\theta }}_{st} \left[ {\overline{v}_{1} \left( \tau \right)\dot{\overline{v}}_{1} \left( \tau \right)\mathop \int \limits_{0}^{1} \varphi_{1}^{2} \left( {\overline{x}_{1} } \right)d\overline{x}_{1} + \left( {1 + m_{H} } \right)\overline{v}_{1} \left( \tau \right)\dot{\overline{v}}_{1} \left( \tau \right)\varphi_{1}^{2} \left( 1 \right)} \right. \\ & \left. { + \overline{p}_{1} \left( \tau \right)\dot{\overline{p}}_{1} \left( \tau \right)\mathop \int \limits_{0}^{1} \psi_{1}^{2} \left( {\overline{x}_{2} } \right)d\overline{x}_{2} } \right] + 2\dot{\overline{\phi }}\left[ {\overline{p}_{1} \left( \tau \right)\dot{\overline{p}}_{1} \left( \tau \right)\mathop \int \limits_{0}^{1} \psi_{1}^{2} \left( {\overline{x}_{2} } \right)d\overline{x}_{2} } \right] \\ & - \cos \left( {\overline{\theta }_{st} \left( \tau \right) - \gamma } \right)\overline{v}_{1} \left( \tau \right)\left[ {\mathop \int \limits_{0}^{1} \varphi_{1} \left( {\overline{x}_{1} } \right)d\overline{x}_{1} + \left( {1 + m_{H} } \right)\varphi_{1} \left( 1 \right)} \right] \\ & + \cos \left( {\overline{\theta }_{st} \left( \tau \right) - \overline{\phi }\left( \tau \right) - \gamma } \right)\overline{p}_{1} \left( \tau \right)\mathop \int \limits_{0}^{1} \psi_{1} \left( {\overline{x}_{2} } \right)d\overline{x}_{2} \\ & + \left( {\frac{3}{2} + m_{H} } \right)\sin \left( {\overline{\theta }_{st} \left( \tau \right) - \gamma } \right) - \frac{1}{2}\sin \left( {\overline{\theta }_{st} \left( \tau \right) - \overline{\phi }\left( \tau \right) - \gamma } \right) \\ \end{aligned} $$
$$ \begin{aligned} F_{2} \left( {{\varvec{q}},\dot{\user2{q}}} \right) = & \overline{v}_{1} \left( \tau \right)\left( {\mathop \int \limits_{0}^{1} \varphi_{1}^{2} \left( {\overline{x}_{1} } \right)d\overline{x}_{1} + \left( {1 + m_{H} } \right)\varphi_{1}^{2} \left( 1 \right)} \right)\dot{\overline{\theta }}_{st}^{2} \\ & - \sin \left( {\overline{\theta }_{st} \left( \tau \right) - \gamma } \right)\left( {\mathop \int \limits_{0}^{1} \varphi_{1} \left( {\overline{x}_{1} } \right)d\overline{x}_{1} + \left( {1 + m_{H} } \right)\varphi_{1} \left( 1 \right)} \right) - D\overline{v}_{1} \left( \tau \right)\mathop \int \limits_{0}^{1} \varphi_{1}^{\prime \prime 2} \left( {\overline{x}_{1} } \right)d\overline{x}_{1} \\ \end{aligned} $$
$$ \begin{aligned} F_{3} \left( {{\varvec{q}},\dot{\user2{q}}} \right) = & 2\left( {\dot{\overline{\theta }}_{st} - \dot{\overline{\phi }}} \right)\overline{p}_{1} \left( \tau \right)\dot{\overline{p}}_{1} \left( \tau \right)\mathop \int \limits_{0}^{1} \psi_{1}^{2} \left( {\overline{x}_{2} } \right)d\overline{x}_{2} \\ & - \cos \left( {\overline{\theta }_{st} \left( \tau \right) - \overline{\phi }\left( \tau \right) - \gamma } \right)\overline{p}_{1} \left( \tau \right)\mathop \int \limits_{0}^{1} \psi_{1} \left( {\overline{x}_{2} } \right)d\overline{x}_{2} \\ & + \frac{1}{2}\sin \left( {\overline{\theta }_{st} \left( \tau \right) - \overline{\phi }\left( \tau \right) - \gamma } \right) \\ \end{aligned} $$
$$ \begin{aligned} F_{4} ({\varvec{q}},\dot{\user2{q}}) = & \left( {\dot{\overline{\theta }}_{st} - \dot{\overline{\phi }}} \right)^{2} \overline{p}_{1} (\tau )\int\limits_{0}^{1} {\psi_{1}^{2} \left( {\overline{x}_{2} } \right)} d\overline{x}_{2} \\ & + \sin \left( {\overline{\theta }_{st} \left( \tau \right) - \overline{\phi }\left( \tau \right) - \gamma } \right)\int\limits_{0}^{1} {\overline{\psi }_{1} (\overline{x}_{2} )} d\overline{x}_{2} - D\overline{p}_{1} (\tau )\int\limits_{0}^{1} {\psi_{1}^{\prime \prime 2} \left( {\overline{x}_{2} } \right)} d\overline{x}_{2} \\ \end{aligned} $$
$$ F_{v1} \left( {\dot{\user2{q}}} \right) = 0 ,\quad F_{v2} \left( {\dot{q}} \right) = - \overline{\eta }D\dot{\overline{v}}_{1} \left( \tau \right)\mathop \int \limits_{0}^{1} \varphi_{1}^{\prime \prime \prime \prime } \left( {\overline{x}_{1} } \right)d\overline{x}_{1} $$
$$ F_{{{\varvec{v}}3}} \left( {\dot{\user2{q}}} \right) = 0,\quad F_{{{\varvec{v}}4}} \left( {\dot{\user2{q}}} \right) = - \overline{\eta }D\dot{\overline{p}}_{1} \left( \tau \right)\mathop \int \limits_{0}^{1} \psi_{1}^{\prime \prime \prime \prime } \left( {\overline{x}_{2} } \right)d\overline{x}_{2} . $$

To see the matrices \(Q^{ + }\) and \(Q^{ - }\) in the jump equations, the readers are referred to our former study in [41].

$$ Q^{ + } \left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\theta_{st} } \\ {v_{1} } \\ \end{array} } \\ {\begin{array}{*{20}c} \phi \\ {p_{1} } \\ \end{array} } \\ \end{array} } \right\}^{ + } = Q^{ - } \left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\theta_{st} } \\ {v_{1} } \\ \end{array} } \\ {\begin{array}{*{20}c} \phi \\ {p_{1} } \\ \end{array} } \\ \end{array} } \right\}^{ - } . $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safartoobi, M., Dardel, M. & Mohammadi Daniali, H. Passive walking biped robot model with flexible viscoelastic legs. Nonlinear Dyn 109, 2615–2636 (2022). https://doi.org/10.1007/s11071-022-07600-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07600-6

Keywords

Navigation