[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A simple chaotic circuit with a hyperbolic sine function and its use in a sound encryption scheme

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, one of the most simple chaotic autonomous circuits, which has been reported in the literature, is presented. The proposed circuit, that belongs to jerk systems family, is described mathematically by a 3-D dynamical system with only five terms, and it has only one nonlinear term, which is the hyperbolic sine term implemented with two antiparallel diodes. This new jerk system presents interesting chaotic phenomena, such as coexisting attractors and antimonotonicity. Also, as an application of the proposed system a sound encryption scheme that is based on a random number generator, which is implemented with the jerk system, is presented. The practical usefulness of the proposed simple chaotic jerk circuit is confirmed from the results of NIST-800-22 tests of the chaotic random number generator, as well as from the successful sound encryption and decryption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chen, G.: Controlling Chaos And Bifurcations In Engineering Systems. CRC Press, Boca Raton (1999)

    Google Scholar 

  2. Chen, G., Ueta, T.: Chaos In Circuits And Systems. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  3. Koyuncu, I., Ozcerit, A.T., Pehlivan, I.: An analog circuit design and FPGA-based implementation of the Burke-Shaw chaotic system. J. Optoelectron. Adv. Mater. 7, 635–638 (2013)

    Google Scholar 

  4. Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurc. Chaos 18, 3183–3206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buscarino, A., Fortuna, L., Frasca, M., Gambuzza, L.V.: Memristive chaotic circuits based on cellular nonlinear networks. Int. J. Bifurc. Chaos 22, 1250070 (2012)

    Article  MATH  Google Scholar 

  6. Gopal, S., Lai, Y.C.: Inducing chaos in MOSFET-based electronic circuits. Circ. Syst. Signal Process. 28, 535–545 (2009)

    Article  MATH  Google Scholar 

  7. Borah, M., Singh, P.P., Roy, B.K.: Improved chaotic dynamics of a fractional-order system, its chaos-suppressed synchronisation and circuit implementation. Circ. Syst. Signal Process. 35, 1871–1907 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Newcom, R.W., El-Leithy, N.: Chaos generation using binary hysteresis. Circ. Syst. Signal Process. 5, 321–341 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Azar, A.T., Volos, C., Gerodimos, N.A., Tombras, G.S., Pham, V.T., Radwan, A.G., Vaidyanathan, S., Ouannas, A., Munoz-Pacheco, J.M.: A novel chaotic system without equilibrium: Dynamics, synchronization and circuit realization. Complexity 2017 (2017). doi:10.1155/2017/7871467

  10. Cuomo, K.M., Oppenheim, A.V.: Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. 71, 65–68 (1993)

    Article  Google Scholar 

  11. Liao, T.L., Tsai, S.H.: Adaptive synchronization of chaotic systems and its application to secure communications. Chaos Soliton Fract. 11, 1387–1396 (2000)

    Article  MATH  Google Scholar 

  12. Kolumban, G., Kennedy, M.P., Chua, L.O.: The role of synchronization in digital communications using chaos. II. Chaotic modulation and chaotic synchronization. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 45, 1129–1140 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tam, W.M., Chi, K.T.: A near-optical noncoherent chaos-based communication scheme. Circ. Syst. Signal Process. 24, 675–687 (2005)

    Article  MATH  Google Scholar 

  14. Kaddoum, G., Lawrance, A.J., Charge, P., Roviras, D.: Chaos communication performance: theory and computation. Circ. Syst. Signal Process. 30, 185–208 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Azar, A.T., Vaidyanathan, S.: Chaos Modeling And Control Systems Design, Studies In Computational Intelligence, vol. 581. Springer, Berlin (2015)

    MATH  Google Scholar 

  16. Vaidyanathan, S., Azar, A.T., Rajagopal, K., Alexander, P.: Design and SPICE implementation of a 12-term novel hyperchaotic system and its synchronization via active control. Int. J. Model. Identif. Contr. 23, 267–277 (2015)

    Article  Google Scholar 

  17. Zhou, J., Chen, T., Xiang, L.: Chaotic lag synchronization of coupled delayed neural networks and its applications in secure communication. Circ. Syst. Signal Process. 24, 599–613 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grassi, G., Mascolo, S.: Synchronizing high dimensional chaotic systems via eigenvalue placement with application to cellular neural networks. Int. J. Bifurc. Chaos 9, 705–711 (1999)

    Article  MATH  Google Scholar 

  19. Chua, L.O., Yang, L.: Cellular neural networks: applications. IEEE Trans. Circuits Syst. 35, 1273–1290 (1988)

    Article  MathSciNet  Google Scholar 

  20. Ma, J., Wu, X., Chu, R., Zhang, L.: Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice. Nonlinear Dyn. 76, 1951–1962 (2014)

    Article  Google Scholar 

  21. Wu, X., Ma, J., Yuan, L., Liu, Y.: Simulating electric activities of neurons by using PSPICE. Nonlinear Dyn. 75, 113–126 (2014)

    Article  MathSciNet  Google Scholar 

  22. Li, F., Liu, Q., Guo, H., Zhao, Y., Tang, J., Ma, J.: Simulating the electric activity of FitzHugh-Nagumo neuron by using Josephson junction model. Nonlinear Dyn. 69, 2169–2179 (2012)

    Article  MathSciNet  Google Scholar 

  23. Ren, G., Xu, Y., Wang, C.: Synchronization behavior of coupled neuron circuits composed of memristors. Nonlinear Dyn. doi:10.1007/s11071-016-3283-2 (2017)

  24. Yalcin, M.E., Suykens, J.A.K., Vandewalle, J.: True random bit generation from a double-scroll attractor. IEEE Trans. Circuits Syst. I, Reg. Pap. 51, 1395–1404 (2004)

    Article  MathSciNet  Google Scholar 

  25. Bernstein, G.M., Lieberman, M.A.: Secure random number generation using chaotic circuits. IEEE Trans. Circuits Syst. 37, 1157–1164 (1990)

    Article  MathSciNet  Google Scholar 

  26. Arena, P., Fortuna, L., Frasca, M.: Attitude control in walking hexapod robots: an analogic spatio-temporal approach. Int. J. Circ. Theory Appl. 30, 349–362 (2002)

    Article  MATH  Google Scholar 

  27. Nakamura, Y., Sekiguchi, A.: The chaotic mobile robot. IEEE Trans. Robot. Autom. 17, 898–904 (2001)

    Article  Google Scholar 

  28. Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N.: A chaotic path planning generator for autonomous mobile robots. Robot. Auton. Syst. 60, 651–656 (2012)

    Article  Google Scholar 

  29. Bouali, S., Buscarino, A., Fortuna, L., Frasca, M., Gambuzza, L.V.: Emulating complex business cycles by using an electronic analogue. Nonlinear Anal. Real 13, 2459–2465 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tacha, O.I., Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N., Vaidyanathan, S., Pham, V.T.: Analysis, adaptive control and circuit simulation of a novel nonlinear finance system. Appl. Math. Comput. 276, 200–217 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Linsay, P.S.: Period doubling and chaotic behavior in a driven anharmonic oscillator. Phys. Rev. Lett. 47, 1349–1352 (1981)

    Article  Google Scholar 

  32. Deane, J.H.: Modeling the dynamics of nonlinear inductor circuits. IEEE Trans. Magn. 30, 2795–2801 (1994)

    Article  Google Scholar 

  33. Lakshmanan, M., Murali, K.: Experimental chaos from non-autonomous electronic circuits. Philos. Trans. A Math. Phys. Eng. Sci. 353, 33–46 (2014)

    Article  MATH  Google Scholar 

  34. Lindberg, E., Murali, K., Tamasevicius, A.: The smallest transistor-based nonautonomous chaotic circuit. IEEE Trans. Circuits Syst. II, Expr. Briefs 52, 661–664 (2005)

    Article  Google Scholar 

  35. Tchitnga, R., Fotsin, H.B., Nana, B., Fotso, P.H.L., Woafo, P.: Hartley’s oscillator: the simplest chaotic two-component circuit. Chaos Soliton Fract. 45, 306–313 (2012)

    Article  Google Scholar 

  36. Pham, V.T., Buscarino, A., Fortuna, L., Frasca, M.: Simple memristive time-delay chaotic systems. Int. J. Bifurc. Chaos 23, 1350073 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Muthuswamy, B., Chua, L.O.: Simplest chaotic circuit. Int. J. Bifurc. Chaos 20, 1567–1580 (2010)

    Article  Google Scholar 

  38. Barboza, R., Chua, L.O.: The four-element Chua’s circuit. Int. J. Bifurc. Chaos 18, 943–955 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Srisuchinwong, B., Munmuangsaen, B.: Four current-tunable chaotic oscillators in set of two diode-reversible pairs. Electron. Lett. 48, 1051–1053 (2012)

    Article  Google Scholar 

  40. San-Um, W., Suksiri, B., Ketthong, P.: A Simple RLCC-Diode-opamp chaotic oscillator. Int. J. Bifurc. Chaos 24, 1450155 (2014)

    Article  MATH  Google Scholar 

  41. Piper, J.R., Sprott, J.C.: Simple autonomous chaotic circuits. IEEE Trans. Circuits Syst. II, Exp. Briefs 57, 730–734 (2010)

    Article  Google Scholar 

  42. Tamasevicius, A., Mykolaitis, G., Pyragas, V., Pyragas, K.: A simple chaotic oscillator for educational purposes. Eur. J. Phys. 26, 61–63 (2005)

    Google Scholar 

  43. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  44. Rossler, O.E.: An equation for continuous chaos. Phys. Lett. A 57, 397–398 (1976)

    Article  Google Scholar 

  45. Rossler, O.E.: Continuous chaos—four prototype equations. Ann. NY Acad. Sci. 316, 376–392 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E 50, R647–R650 (1994)

    Article  MathSciNet  Google Scholar 

  47. Schot, S.H.: Jerk: the time rate of change of acceleration. Am. J. Phys. 46, 1090–1094 (1978)

    Article  Google Scholar 

  48. Sprott, J.C.: Some simple chaotic jerk functions. Am. J. Phys. 65, 537–543 (1997)

    Article  Google Scholar 

  49. Sprott, J.C.: Simplest dissipative chaotic flow. Phys. Lett. A 228, 271–274 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  50. Fu, Z., Heidel, J.: Non-chaotic behavior in three-dimensional quadratic systems. Nonlinearity 10, 1289–1303 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  51. Fu, Z., Heidel, J.: Non-chaotic behaviour in three-dimensional quadratic systems. Nonlinearity 12, 739 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  52. Sprott, J.C.: Simple chaotic systems and circuits. Am. J. Phys. 68, 758–763 (2000)

    Article  Google Scholar 

  53. Munmuangsaen, B., Srisuchinwong, B., Sprott, J.C.: Generalization of the simplest autonomous chaotic system. Phys. Lett. A 375, 1445–1450 (2011)

    Article  MATH  Google Scholar 

  54. Jafari, S., Sprott, J.C., Golpayegani, S.M.R.H.: Elementary quadratic chaotic flows with no equilibria. Phys. Lett. A 377, 699–702 (2013)

    Article  MathSciNet  Google Scholar 

  55. Yu, S., Lu, J., Leung, H., Chen, G.: Design and implementation of n-scroll chaotic attractors from a general jerk circuit. IEEE Trans. Circuits Syst. I, Reg. Pap. 52, 1459–1476 (2005)

    Article  MathSciNet  Google Scholar 

  56. Yalcin, M.E.: Multi-scroll and hypercube attractors from a general jerk circuit using Josephson junctions. Chaos Soliton Fract. 34, 1659–1666 (2007)

    Article  MathSciNet  Google Scholar 

  57. Chunxia, L., Jie, Y., Xiangchun, X., Limin, A., Yan, Q., Yongqing, F.: Research on the multi-scroll chaos generation based on Jerk mode. Proced. Eng. 29, 957–961 (2012)

    Article  Google Scholar 

  58. Srisuchinwong, B., Nopchinda, D.: Current-tunable chaotic jerk oscillator. Electron. Lett. 49, 587–589 (2013)

    Article  Google Scholar 

  59. Vaidyanathan, S., Volos, C.K., Pham, V.T., Madhavan, K., Idowu, B.A.: Adaptive backstepping control, synchronization and circuit simulation of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities. Arch. Control Sci. 24, 257–285 (2014)

    MathSciNet  MATH  Google Scholar 

  60. Schubert, E.F.: Light Emitting Diodes. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  61. Rhderick, E.H., Williams, R.: Metal-semiconductor Contacts. Clarendon Press, Oxford (1988)

    Google Scholar 

  62. Franco, S.: Design with Operational Amplifiers and Analog Integrated Circuits. McGraw-Hill Series in Electrical and Computer Engineering. McGraw-Hill Complanies, NY (2015)

  63. Clayton, G.B., Winder, S.: Operational Amplifiers. Newnes, Oxford (2003)

  64. Munoz-Pacheco, J.M., Tlelo-Cuautle, E., Toxqui-Toxqui, I., Sanchez-Lopez, C., Trejo-Guerra, R.: Frequency limitations in generating multi-scroll chaotic attractors using CFOAs. Int. J. Electron. 101, 1559–1569 (2014)

    Article  Google Scholar 

  65. Trejo-Guerra, R., Tlelo-Cuautle, E., Carbajal-Gmez, V.H., Rodriguez-Gomez, G.: A survey on the integrated design of chaotic oscillators. Appl. Math. Comput. 219, 5113–5122 (2013)

    MathSciNet  MATH  Google Scholar 

  66. Trejo-Guerra, R., Tlelo-Cuautle, E., Jimenez-Fuentes, J.M., Snchez-Lpez, C., Muoz-Pacheco, J.M., Espinosa-Flores-Verdad, G., Rocha-Prez, J.M.: Integrated circuit generating 3-and 5-scroll attractors. Commun. Nonlinear Sci. 17, 4328–4335 (2012)

    Article  MathSciNet  Google Scholar 

  67. Argyris, J., Faust, G., Haase, M., Friedrich, R. (eds.): Dynamical systems with dissipation. In: An Exploration of Dynamical Systems and Chaos. Springer, Berlin, pp. 189–298 (2015)

  68. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  69. Frederickson, P., Kaplan, J.L., Yorke, E.D., Yorke, J.A.: The Liapunov dimension of strange attractors. J. Differ. Equ. 49, 185–207 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  70. Pisarchik, A.N., Feudel, U.: Control of multistability. Phys. Rep. 540, 167–216 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  71. Ma, J., Wu, F., Ren, G., Tang, J.: A class of initials-dependent dynamical systems. Appl. Math. Comput. 298, 65–76 (2017)

    MathSciNet  Google Scholar 

  72. Dawson, S.P., Grebogi, C., Yorke, J.A., Kan, I., Kocak, H.: Antimonotonicity: Inevitable reversals of period-doubling cascades. Phys. Lett. A 163, 249–254 (1992)

    Article  MathSciNet  Google Scholar 

  73. Beirami, A., Nejati, H., Ali, Wh: Zigzag map: a variability-aware discrete-time chaotic-map truly random number generator. Electron. Lett. 48, 1537–1538 (2012)

    Article  Google Scholar 

  74. Zhao, L., Liao, X., Xiao, D., Xiang, T., Zhou, Q., Duan, S.: TRNG from mobile telephone photo based on chaotic cryptography. Chaos Soliton Fract. 42, 1692–1699 (2009)

    Article  Google Scholar 

  75. Ergun, S., Ozoguz, S.: Truly random number generators based on a non-autonomous chaotic oscillator. AEU-Int. J. Electron. C. 61, 235–242 (2007)

    Article  Google Scholar 

  76. Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N.: Image encryption process based on chaotic synchronization phenomena. Signal Process. 93, 1328–1340 (2013)

    Article  Google Scholar 

  77. Akgul, A., Calgan, H., Koyuncu, I., Pehlivan, I., Istanbullu, A.: Chaos-based engineering applications with a 3D chaotic system without equilibrium points. Nonlinear Dyn. doi:10.1007/s11071-015-2501-7 (2016)

  78. Cavusoglu, U., Akgul, A., Kacar, S., Pehliivan, I., Zengin, A.: A novel chaos-based encryption algorithm over TCP data packet for secure communication. Secur. Commun. Netw. doi:10.1002/sec.1414 (2016)

  79. Akgul, A., Moroz, I., Pehlivan, I., Sundarapandian, V.: A new four-scroll chaotic attractor and its engineering applications. Optik 127(13), 5491–5499 (2016)

    Article  Google Scholar 

  80. Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N.: Fingerprint images encryption process based on a chaotic true bits generator. Int. J. Multimed. Intell. Secur. 1, 320–335 (2010)

    Article  Google Scholar 

  81. Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.G.: Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans. Evolut. Comput. 7, 289–304 (2003)

    Article  Google Scholar 

  82. Alatas, B.: Chaotic bee colony algorithms for global numerical optimization. Expert Syst. Appl. 37, 5682–5687 (2010)

    Article  Google Scholar 

  83. Morse, M.L., Beem, L.W.: Benefits of Reiki therapy for a severely neutropenic patient with associated influences on a true random number generator. J. Altern. Complement. Med. 17, 1181–1190 (2011)

    Article  Google Scholar 

  84. Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N.: Motion control of robots using a chaotic truly random bits generator. J. Eng. Sci. Technol. Rev. 5, 6–11 (2012)

    Google Scholar 

  85. Maysaa, A., Iman, Q.: Speech encryption using chaotic map and blowfish algorithms. J. Basrah Res. 39, 68–76 (2013)

    Google Scholar 

  86. Akgul, A., Kacar, S., Pehlivan, I.: Audio data encryption with single and double dimension discrete-time chaotic systems. Turkish Online J. Sci. Technol. 5, 14–23 (2015)

  87. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. NIST Special Publication 800-22 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Volos.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volos, C., Akgul, A., Pham, VT. et al. A simple chaotic circuit with a hyperbolic sine function and its use in a sound encryption scheme. Nonlinear Dyn 89, 1047–1061 (2017). https://doi.org/10.1007/s11071-017-3499-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3499-9

Keywords