[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

A uniformly accurate exponential wave integrator Fourier pseudo-spectral method with structure-preservation for long-time dynamics of the Dirac equation with small potentials

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

For the Dirac equation with potentials characterized by a small parameter ε ∈ (0,1], the numerical methods for long-time dynamics have received more and more attention. Recently, two exponential wave integrator Fourier pseudo-spectral (EWIFP) methods for the Dirac equation have been proposed (Feng et al., Appl. Numer. Math. 172, 50–66, 2022) which are uniformly accurate about ε and perform well over the classical methods. However, the EWIFP methods cannot preserve the mass and energy, which are important structural features of the Dirac equation from the perspective of geometric numerical integration. In addition, the EWIFP methods are not time symmetric or only are conditionally stable under specific stability condition which implies CFL condition restrictions on the grid ratio. In this work, we propose a structure-preserving EWIFP (SPEWIFP) method. The proposed method is proved to be time symmetric, stable only under the condition \(\tau \lesssim 1\), and preserves the discrete energy and modified mass. Without any CFL condition restrictions on the grid ratio, we carry out a rigourously error analysis and give uniform error bounds of the method at \(O(h^{m_{0}} + \varepsilon ^{1-\beta } \tau ^{2})\) up to the time at O(1/εβ) with β ∈ [0,1], mesh size h, time step τ, and an integer m0 determined by the regularity conditions. In general, the Dirac equation with small potentials can be converted to an oscillatory Dirac equation with wavelength at O(εβ) in time which includes the case of simultaneous massless and nonrelativistic regime. It is easy to extend the error bounds and structure-preservation properties to the oscillatory Dirac equation. Numerical experiments support our error bounds and structure-preservation properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abanin, D. A., Morozov, S. V., Ponomarenko, L. A., Gorbachev, R. V., Mayorov, A. S., Katsnelson, M. I., Watanabe, K., Taniguchi, T., Novoselov, K. S., Levitov, L. S., Geim, A. K.: Giant nonlocality near the Dirac point in graphene. Science 332, 328–330 (2011)

    Article  Google Scholar 

  2. Ablowitz, M. J., Zhu, Y.: Nonlinear waves in shallow honeycomb lattices. SIAM J. Appl. Math. 72, 240–260 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ackad, E., Horbatsch, M.: Numerical solution of the Dirac equation by a mapped Fourier grid method. J. Phys. A: Math. General 38, 3157–3171 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Adams, R. A., Fournier, J. J.: Sobolev Spaces. Elsevier, New York (2003)

    MATH  Google Scholar 

  5. Anderson, C. D.: The positive electron. Phys. Rev. 43, 491–498 (1933)

    Article  Google Scholar 

  6. Bao, W., Yin, J.: A fourth-order compact time-splitting Fourier pseudospectral method for the Dirac equation. Res. Math. Sci. 6, 11 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bao, W., Cai, Y., Jia, X., Yin, J.: Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime. Sci. China Math. 59, 1461–1494 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bao, W., Cai, Y., Jia, X., Tang, Q.: A uniformly accurate multiscale time integrator pseudospectral method for the Dirac equation in the nonrelativistic limit regime. SIAM J. Numer. Anal. 54, 1785–1812 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bao, W., Cai, Y., Jia, X., Tang, Q.: Numerical methods and comparison for the Dirac equation in the nonrelativistic limit regime. J. Sci. Comput. 71, 1094–1134 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bao, W., Cai, Y., Yin, J.: Super-resolution of time-splitting methods for the Dirac equation in the nonrelativistic regime. Math. Comp. 89, 2141–2173 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bao, W., Feng, Y., Su, C.: Uniform error bounds of time-splitting spectral methods for the long-time dynamics of the nonlinear Klein-Gordon equation with weak nonlinearity. Math. Comput. 91, 811–842 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bao, W., Feng, Y., Yin, J.: Improved uniform error bounds on time-splitting methods for the long-time dynamics of the Dirac equation with small potentials. arXiv:2112.03616

  13. Bao, W., Cai, Y., Feng, Y.: Improved uniform error bounds on time-splitting methods for the long-time dynamics of the weakly nonlinear Dirac equation. arXiv:2203.05886v2

  14. Bechouche, P., Mauser, N., Poupaud, F.: (Semi)-nonrelativistic limits of the Dirac equation with external time-dependent electromagnetic field. Commun. Math. Phys. 197, 405–425 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Braun, J. W., Su, Q., Grobe, R.: Numerical approach to solve the time-dependent Dirac equation. Phys. Rev. A 59, 604–612 (1999)

    Article  Google Scholar 

  16. Brinkman, D., Heitzinger, C., Markowich, P. A.: A convergent 2D finite-difference scheme for the Dirac-Poisson system and the simulation of graphene. J. Comput. Phys. 257, 318–332 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Carles, R., Markowich, P. A., Sparber, C.: Semiclassical asymptotics for weakly nonlinear Bloch waves. J. Stat. Phys. 117, 343–375 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chartier, P., M’ehats, F., Thalhammer, M., Zhang, Y.: Improved error estimates for splitting methods applied to highly-oscillatory nonlinear Schrödinger equations. Math. Comp. 85, 2863–2885 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cirincione, R. J., Chernoff, P. R.: Dirac and Klein-Gordon equations: convergence of solutions in the nonrelativistic limit. Commun. Math. Phys. 79, 33–46 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Das, A.: General solutions of Maxwell-Dirac equations in 1 + 1-dimensional space-time and spatially confined solution. J. Math. Phys. 34, 3986–3999 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Das, A., Kay, D.: A class of exact plane wave solutions of the Maxwell-Dirac equations. J. Math. Phys. 30, 2280–2284 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Esteban, M., Séré, E.: Existence and multiplicity of solutions for linear and nonlinear Dirac problems. Partial Differ Equ. 22 Appl. 12, 107–112 (1997)

    MathSciNet  MATH  Google Scholar 

  23. Fefferman, C. L., Weinstein, M. I.: Honeycomb lattice potentials and Dirac points. J. Am. Math. Soc. 25, 1169–1220 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fefferman, C. L., Weinstein, M. I.: Wave packets in honeycomb structures and two-dimensional Dirac equations. Commun. Math. Phys. 326, 251–286 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Feng, Y., Yin, J.: Spatial resolution of different discretizations over long-time for the Dirac equation with small potentials. preprint arXiv:2105.10468 (2021)

  26. Feng, Y., Xu, Z. G., Yin, J.: Uniform error bounds of exponential wave integrator methods for the long-time dynamics of the Dirac equation with small potentials. Appl. Numer. Math. 172, 50–66 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fillion-Gourdeau, F., Lorin, E., Bandrauk, A. D.: Numerical solution of the time-dependent Dirac equation in coordinate space without fermion-doubling. Comput. Phys. Commun. 183, 1403–1415 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fillion-Gourdeau, F., Lorin, E., Bandrauk, A. D.: Resonantly enhanced pair production in a simple diatomic model. Phys. Rev. Lett. 110, 013002 (2013)

    Article  Google Scholar 

  29. Fillion-Gourdeau, F., Lorin, E., Bandrauk, A. D.: A split-step numerical method for the time-dependent Dirac equation in 3-D axisymmetric geometry. J. Comput. Phys. 272, 559–587 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gesztesy, F., Grosse, H., Thaller, B.: A rigorous approach to relativistic corrections of bound state energies for spin-1/2 particles. Ann. Inst. Henri Poincaricles. Ann. Inst. Henri Poiné Phys. Theor. 40, 159–174 (1984)

    MathSciNet  MATH  Google Scholar 

  31. Gross, L.: The Cauchy problem for the coupled Maxwell and Dirac equations. Commun. Pure Appl. Math. 19, 1–15 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gosse, L.: A well-balanced and asymptotic-preserving scheme for the one-dimensional linear Dirac equation. BIT Numer. Math. 55, 433–458 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Guo, B. -Y., Shen, J., Xu, C. -L.: Spectral and pseudospectral approximations using Hermite functions: application to the Dirac equation. Adv. Comput. Math. 19, 35–55 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  35. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jin, S., Wu, H., Yang, X.: A numerical study of the Gaussian beam methods for one-dimensional Schrodinger-Poisson equations. J. Comput. Math. 28, 261–272 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, J.: Energy-preserving exponential integrator Fourier pseudo-spectral schemes for the nonlinear Dirac equation. Appl. Numer. Math. 172, 1–26 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, J.: Error analysis of a time fourth-order exponential wave integrator Fourier pseudo-spectral method for the nonlinear Dirac equation. Int. J. Comput. Math. 99, 791–807 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  39. Li, J., Gao, Y.: Energy-preserving trigonometrically-fitted continuous stage Runge-Kutta-Nyström methods for oscillatory Hamiltonian systems. Numer. Algorithms 81, 1379–1401 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, J., Wang, T.: Optimal point-wise error estimate of two conservative fourth-order compact finite difference schemes for the nonlinear Dirac equation. Appl. Numer. Math. 162, 150–170 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  41. Li, J., Wu, X.: Energy-preserving continuous stage extended Runge-Kutta-Nyström methods for oscillatory Hamiltonian systems. Appl. Numer. Math. 145, 469–487 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. Deng, S., Li, J.: A uniformly accurate exponential wave integrator Fourier pseudo-spectral method with energy-preservation for long-time dynamics of the nonlinear Klein-Gordon equation. Appl. Numer. Math. https://doi.org/10.1016/j.apnum.2022.03.019

  43. Ma, Y., Yin, J.: Error bounds of the finite difference time domain methods for the Dirac equation in the semiclassical regime. J. Sci. Comput. 81, 1801–1822 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ma, Y., Yin, J.: Error estimates of finite difference methods for the Dirac equation in the massless and nonrelativistic regime. Numer. Algorithms 89, 1415–1440 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  45. Miyatake, Y., Butcher, J. C.: Characterization of energy-preserving methods and the construction of parallel integrators for Hamiltonian systems. SIAM J. Numer. Anal. 54, 1993–2013 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Neto, A. H. C., Guinea, F., Peres, N. M. R., Novoselov, K. S., Geim, A. K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  Google Scholar 

  47. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  48. Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006)

    MATH  Google Scholar 

  49. Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms, Analysis and Applications. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  50. Smith, G. D.: Numerical Solution of Partial Differential Equations. Oxford University Press, London (1965)

    Google Scholar 

  51. Sparber, C., Markowich, P. A.: Semiclassical asymptotics for the Maxwell-Dirac system. J. Math. Phys. 44, 4555–4572 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  52. Spohn, H.: Semiclassical limit of the Dirac equation and spin precession. Ann. Phys. 282, 420–431 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wu, H., Huang, Z., Jin, S., Yin, D.: Gaussian beam methods for the Dirac equation in the semi-classical regime. Commun. Math. Sci. 10, 1301–1315 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. Xu, J., Shao, S., Tang, H.: Numerical methods for nonlinear Dirac equation. J. Comput. Phys. 245, 131–149 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for their valuable suggestions, which help improve this paper significantly.

Funding

The research was supported in part by the Natural Science Foundation of Hebei Province (No. A2021205036) and Education Department of Hebei Province Fund (No. QN2019053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyong Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhu, L. A uniformly accurate exponential wave integrator Fourier pseudo-spectral method with structure-preservation for long-time dynamics of the Dirac equation with small potentials. Numer Algor 92, 1367–1401 (2023). https://doi.org/10.1007/s11075-022-01345-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01345-4

Keywords