Abstract
The main aim of this research study is to present a new and efficient numerical method based on the second kind Chebyshev wavelets for solving the general form of distributed order fractional differential equations in the time domain with the Caputo fractional derivatives. For the first time, based on the second kind Chebyshev wavelets, an exact formula for the operational vector of the Riemann-Liouville fractional integral operator is derived by using the unit step function and Laplace transform method. Applying this operational vector via the collocation method in our approach provides an approximate solution by converting the problem under consideration into a system of algebraic equations which can be solved by the Newton method. Discussion on the error bound and convergence analysis for the proposed method is presented. Finally, five test problems are considered to confirm the reliability and effectiveness of the proposed method.
Similar content being viewed by others
References
Abd-Elhameed, W.M., Doha, E.H., Youssri, Y.H.: New spectral second kind Chebyshev wavelets algorithm for solving linear and nonlinear second-order differential equations involving singular and Bratu type equations. Abstr. Appl. Anal. 2013, 1–10 (2013)
Amin, R., Shah, K., Asif, M., Khan, I., Ullah, F.: An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet. J. Comput. Appl. Math. 381, 113028 (2021)
Atanackovic, T.M.: A generalized model for the uniaxial isothermal deformation of a viscoelastic body. Acta Mech. 159, 77–86 (2002)
Atanackovic, T.M., Budincevic, M., Pilipovic, S.: On a fractional distributed order oscillator. J. Phys. A, Math. Gen. 38(30), 6703–6713 (2005)
Atanackovic, T.M., Pilipovic, S., Zorica, D.: Time distributed order diffusion-wave equation, II. Applications of the Laplace and Fourier transformations. Proc. R. Soc. A 465, 1893–1917 (2009)
Atanackovic, T.M., Pilipovic, S., Zorica, D.: Distributed order fractional wave equation on a finite domain. Stress relaxation in a rod. Int. J. Eng. Sci 49(2), 175–190 (2011)
Atanackovic, T.M., Pilipovic, S., Zorica, D.: Distributed-order fractional wave equation on a finite domain: creep and forced oscillations of a rod. Contin. Mech. Thermodyn. 23(4), 305–318 (2011)
Bagley, R.L., Torvik, P.J.: On the existence of the order domain and the solution of distributed order equations-part i. Int. J. Appl. Math. 2, 865–882 (2000)
Bagley, R.L., Torvik, P.J.: On the existence of the order domain and the solution of distributed order equations-part II. Int. J. Appl. Math. 2, 965–988 (2000)
Beylkin, G., Coifman, R., Rokhlin, V.: Fast wavelet transforms and numerical algorithms I. Commun. Pure Appl. Math. 44, 141–183 (1991)
Bisheh-Niasar, M., Saadatmandi, A., Akrami-Arani, M.: A new family of high-order difference schemes for the solution of second order boundary value problems. Iran. J. Math. Chem. 9(3), 187–199 (2018)
Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, New York (2006)
Chechkin, A.V., Gorenflo, R., Sokolov, I.M., Gonchar, V.Y.: Distributed order time fractional diffusion equation. Fract. Calc. Appl. Anal. 6, 259–279 (2003)
Chui, C.K., Wavelets, A: Mathematical Tool for Signal Analysis. SIAM, Philadelphia (1997)
Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equation. J. Comput. Appl. Math. 225(1), 96–104 (2009)
Esmaeilbeigi, M., Mirzaee, F., Moazami, D.: Radial basis functions method for solving three-dimensional linear Fredholm integral equations on the cubic domains. Iran. J. Numer. Anal. Optim. 7(2), 15–38 (2017)
Esmaeili, S.H., Shamsi, M., Luchkob, Y.: Numerical solution of fractional differential equations with a collocation method based on Müntz polynomials. Comput. Math. Appl. 62, 918–929 (2011)
Gu, J.S., Jiang, W.S.: The Haar wavelets operational matrix of integration. Int. J. Syst. Sci. 27, 623–628 (1996)
Jiao, Z., Chen, Y.Q., Podlubny, I.: Distributed Order Dynamic System Stability, Simulation and Perspective. Springer, London (2012)
Jibenja, N., Yuttanan, B., Razzaghi, M.: An efficient method for numerical solutions of distributed order fractional differential equations. J. Comput. Nonlinear Dynam. 13, 1–11 (2018)
Katsikadelis, J.T.: Fractional distributed order oscillator: a numerical solution. J. Serb. Soc. Comput. Mech. 6, 148–159 (2012)
Katsikadelis, J.T.: Numerical solution of distributed order fractional differential equations. J. Comput. Phys. 259, 11–22 (2014)
Khalil, H., Shah, K., Khan, R.A.: Approximate solution of boundary value problems using shifted Legendre polynomials. Appl. Comput. Math. 16 (3), 1–15 (2017)
Kharazmi, E., Zayernouri, M., Karniadakis, G.E.: Petrov-Galerkin and spectral collocation methods for distributed order differential equations. SIAM J. Sci. Comput. 39(3), A1003–A1037 (2017)
Li, J., Liu, F., Feng, L., Turner, I.: A novel finite volume method for the Riesz space distributed-order diffusion equation. Comput. Math. Appl. 74, 772–783 (2017)
Li, Y., Sheng, H., Chen, Y.Q.: On distributed order integrator/differentiator. Signal Process 91, 1079–1084 (2011)
Mainardi, F., Mura, A., Gorenflo, R., Stojanovic, M.: The two form of fractional relaxation of distributed order. J. Vib. Control 13, 1249–1268 (2007)
Maleknejad, K., Rashidinia, J., Eftekhari, T.: A new and efficient numerical method based on shifted fractional-order Jacobi operational matrices for solving some classes of two-dimensional nonlinear fractional integral equations, Numerical Methods for Partial Differential Equations (2021). https://doi.org/10.1002/num.22762
Maleknejad, K., Rashidinia, J., Eftekhari, T.: Numerical solutions of distributed order fractional differential equations in the time domain using the müntz-legendre wavelets approach. Numer. Methods Partial Differ. Equ. 37(1), 707–731 (2021). https://doi.org/10.1002/num.22548
Maleknejad, K., Rashidinia, J., Eftekhari, T.: Existence, uniqueness, and numerical analysis of solutions for some classes of two-dimensional nonlinear fractional integral equations in a Banach space. Comput. Appl. Math. 39(4), 1–22 (2020). https://doi.org/10.1007/s40314-020-01322-4
Maleknejad, K., Rashidinia, J., Eftekhari, T.: Operational matrices based on hybrid functions for solving general nonlinear two-dimensional fractional integro-differential equations. Comput. Appl. Math. 39(2), 1–34 (2020). https://doi.org/10.1007/s40314-020-1126-8
Maleknejad, K., Rashidinia, J., Eftekhari, T.: Numerical solution of three-dimensional Volterra-Fredholm integral equations of the first and second kinds based on Bernstein’s approximation. Appl. Math. Comput. 339, 272–285 (2018)
Mashayekhi, S., Razzaghi, M.: Numerical solution of distributed order fractional differential equations by hybrid functions. J. Comput. Phys. 315, 169–181 (2016)
Mashoof, M., Refahi Shekhani, A.H.: Simulating the solution of the distributed order fractional differential equations by block-pulse wavelets, UPB Scientific Bulletin, Series A:. Appl. Math. Phys. 79, 193–206 (2017)
Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)
Ming, Q., Hwang, C., Shih, Y.P.: The computation of wavelet-Galerkin approximation on a bounded interval. Int. J. Numer. Meth. Eng. 39, 2921–2944 (1996)
Podlubny, I., Skovranek, T., Vinagre Jara, B.M., Petras, I., Verbitsky, V., Chen, Y.Q.: Matrix Approach to Discrete Fractional Calculus-III: Non-Equidistant Grids, Variable Step Length and Distributed Orders. Phil. Trans. R. Soc. A 371(1990), 20120153 (2013)
Pourbabaee, M., Saadatmandi, A.: A novel Legendre operational matrix for distributed order fractional differential equations. Appl. Math. Comput. 361, 215–231 (2019)
Rahimkhani, P., Ordokhani, Y., Babolian, E.: Mü ntz-legendre wavelet operational matrix of fractional-order integration and its applications for solving the fractional pantograph differential equations. Numer Algor. 77, 1283–1305 (2018)
Rashidinia, J., Eftekhari, T., Maleknejad, K.: Numerical solutions of two-dimensional nonlinear fractional Volterra and Fredholm integral equations using shifted Jacobi operational matrices via collocation method. J. King Saud Univ. Sci. 33(1), 1–11 (2021). https://doi.org/10.1016/j.jksus.2020.101244
Rossikhin, Y.A., Shitikova, M.V.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. ASME Appl. Mech. Rev. 50, 15–67 (1997)
Saadatmandi, A., Khani, A., Azizi, M.R.: A sinc-Gauss-Jacobi collocation method for solving Volterra’s population growth model with fractional order. Tbil. Math. J. 11(2), 123–137 (2018)
Sedaghat, S., Nemati, S., Ordokhani, Y.: Application of the hybrid functions to solve neutral delay functional differential equations. Int. J. Comput. Math. 94(3), 503–514 (2017)
Semary, M.S., Hassan, H.N., Radwan, A.G.: Modified methods for solving two classes of distributed order linear fractional differential equations. Appl. Math. Comput. 323, 106–119 (2018)
Su, N., Nelson, P.N., Connor, S.: The distributed-order fractional diffusion-wave equation of groundwater flow: theory and application to pumping and slug tests. J. Hydrol. 529, 1262–1273 (2015)
Trung Duong, P.L., Kwok, E., Lee, M.: Deterministic analysis of distributed order systems using operational matrix. Appl. Math. Model. 40, 1929–1940 (2016)
Wang, Y., Fan, Q.: The second kind Chebyshev wavelet method for solving fractional differential equations. Appl. Math. Comput. 218, 8592–8601 (2012)
Yuttanan, B., Razzaghi, M.: Legendre wavelets approach for numerical solutions of distributed order fractional differential equations, Appl. Math. Model. https://doi.org/10.1016/j.apm.2019.01.013 (2019)
Zak, M.A., Tenreiro Machado, J.A.: On the formulation and numerical simulation of distributed order fractional optimal control. Commun. Nonlinear Sci. Numer. Simul. 52, 177–189 (2017)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Rashidinia, J., Eftekhari, T. & Maleknejad, K. A novel operational vector for solving the general form of distributed order fractional differential equations in the time domain based on the second kind Chebyshev wavelets. Numer Algor 88, 1617–1639 (2021). https://doi.org/10.1007/s11075-021-01088-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-021-01088-8
Keywords
- Distributed order fractional differential equations
- Caputo fractional derivative
- The second kind Chebyshev wavelets
- Operational vector
- Error bound