[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Accurate error estimation in CG

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In practical computations, the (preconditioned) conjugate gradient (P)CG method is the iterative method of choice for solving systems of linear algebraic equations Ax = b with a real symmetric positive definite matrix A. During the iterations, it is important to monitor the quality of the approximate solution xk so that the process could be stopped whenever xk is accurate enough. One of the most relevant quantities for monitoring the quality of xk is the squared A-norm of the error vector xxk. This quantity cannot be easily evaluated; however, it can be estimated. Many of the existing estimation techniques are inspired by the view of CG as a procedure for approximating a certain Riemann–Stieltjes integral. The most natural technique is based on the Gauss quadrature approximation and provides a lower bound on the quantity of interest. The bound can be cheaply evaluated using terms that have to be computed anyway in the forthcoming CG iterations. If the squared A-norm of the error vector decreases rapidly, then the lower bound represents a tight estimate. In this paper, we suggest a heuristic strategy aiming to answer the question of how many forthcoming CG iterations are needed to get an estimate with the prescribed accuracy. Numerical experiments demonstrate that the suggested strategy is efficient and robust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. https://sparse.tamu.edu

References

  1. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Research Nat. Bur. Stand. 49, 409–436 (1952)

    Article  MathSciNet  Google Scholar 

  2. Arioli, M.: A stopping criterion for the conjugate gradient algorithms in a finite element method framework. Numer. Math. 97(1), 1–24 (2004)

    Article  MathSciNet  Google Scholar 

  3. Jiránek, P., Strakoš, Z., Vohralík, M.: A posteriori error estimates including algebraic error and stopping criteria for iterative solvers. SIAM J. Sci. Comput. 32(3), 1567–1590 (2010)

    Article  MathSciNet  Google Scholar 

  4. Arioli, M., Georgoulis, E.H., Loghin, D.: Stopping criteria for adaptive finite element solvers. SIAM J. Sci. Comput. 35(3), A1537–A1559 (2013)

    Article  MathSciNet  Google Scholar 

  5. Dolejší, V., Tichý, P.: On efficient numerical solution of linear algebraic systems arising in goal-oriented error estimates. J. Sci. Comput. 83(1), 1–29 (2020)

    Article  MathSciNet  Google Scholar 

  6. Greenbaum, A.: Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences. Linear Algebra Appl. 113, 7–63 (1989)

    Article  MathSciNet  Google Scholar 

  7. Greenbaum, A., Strakoš, Z: Predicting the behavior of finite precision Lanczos and conjugate gradient computations. SIAM J. Matrix Anal. Appl. 13 (1), 121–137 (1992)

    Article  MathSciNet  Google Scholar 

  8. Paige, C.C.: Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem. Linear Algebra Appl. 34, 235–258 (1980)

    Article  MathSciNet  Google Scholar 

  9. Meurant, G.: The Lanczos and conjugate gradient algorithms: From theory to finite precision computations, Software, Environments, and Tools, vol. 19. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2006)

  10. Meurant, G., Strakoš, Z.: The Lanczos and conjugate gradient algorithms in finite precision arithmetic. Acta Numer. 15, 471–542 (2006)

    Article  MathSciNet  Google Scholar 

  11. Golub, G.H., Meurant, G.: Matrices, moments and quadrature. In: Numerical analysis 1993 (Dundee, 1993). Longman Sci. Tech., Harlow, vol. 303, pp 105–156. Pitman Res. Notes Math. Ser. (1994)

  12. Golub, G.H., Strakoš, Z.: Estimates in quadratic formulas. Numer. Algorithm. 8(2-4), 241–268 (1994)

    Article  MathSciNet  Google Scholar 

  13. Golub, G.H., Meurant, G.: Matrices, moments and quadrature. II. How to compute the norm of the error in iterative methods. BIT 37(3), 687–705 (1997)

    Article  MathSciNet  Google Scholar 

  14. Strakoš, Z., Tichý, P.: On error estimation in the conjugate gradient method and why it works in finite precision computations. Electron. Trans. Numer. Anal. 13, 56–80 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Meurant, G., Tichý, P.: On computing quadrature-based bounds for the A-norm of the error in conjugate gradients. Numer. Algorithm. 62(2), 163–191 (2013)

    Article  MathSciNet  Google Scholar 

  16. Meurant, G., Tichý, P.: Approximating the extreme Ritz values and upper bounds for the A-norm of the error in CG. Numer. Algorithm. 82(3), 937–968 (2019)

    Article  MathSciNet  Google Scholar 

  17. Strakoš, Z., Tichý, P.: Error estimation in preconditioned conjugate gradients. BIT 45(4), 789–817 (2005)

    Article  MathSciNet  Google Scholar 

  18. Meurant, G.: Numerical experiments in computing bounds for the norm of the error in the preconditioned conjugate gradient algorithm. Numer. Algorithm. 22(3-4), 353–365 (1999)

    Article  MathSciNet  Google Scholar 

  19. Gergelits, T., Mardal, K.-A., Nielsen, B.F., Strakoš, Z.: Laplacian preconditioning of elliptic PDEs: localization of the eigenvalues of the discretized operator. SIAM J. Numer. Anal. 57(3), 1369–1394 (2019)

    Article  MathSciNet  Google Scholar 

  20. Gergelits, T., Nielsen, B.F., Strakoš, Z.: Generalized spectrum of second order differential operators. SIAM J. Numer. Anal. 58(4), 2193–2211 (2020)

    Article  MathSciNet  Google Scholar 

  21. Kubínová, M., Pultarová, I.: Block preconditioning of stochastic Galerkin problems: new two-sided guaranteed spectral bounds. SIAM/ASA J. Uncertain. Quantif. 8(1), 88–113 (2020)

    Article  MathSciNet  Google Scholar 

  22. Kouhia, R.: Description of the CYLSHELL set. Technical Report, Laboratory of Structural Mechanics, Finland. Matrix Market (1998)

Download references

Funding

The work of J. Papež and P. Tichý was supported by the Grant Agency of the Czech Republic under grant no. 20-01074S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Tichý.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Algorithm 2 (MATLAB code, preconditioned version)

figure f

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meurant, G., Papež, J. & Tichý, P. Accurate error estimation in CG. Numer Algor 88, 1337–1359 (2021). https://doi.org/10.1007/s11075-021-01078-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01078-w

Keywords

Mathematics Subject Classification (2010)

Navigation