Abstract
This paper introduces an efficient unconditionally stable fourth-order method for solving nonlinear space-fractional reaction-diffusion systems with nonhomogeneous Dirichlet boundary conditions on bounded domains. The proposed method is based on a compact improved matrix transformed technique for fourth-order spatial approximation and exponential time differencing approximation for fourth-order time integration. The main advantage of the improved matrix transfer technique is that it leads to a system of ordinary differential equations with spatial discretization matrix raised to the desired fractional order. The key benefit of the fourth-order exponential integrator is that it can be implemented with essentially the same computational complexity as the backward Euler method by utilizing a partial fraction splitting technique in which it is just required to solve two backward Euler-type well-conditioned linear systems at each time step by computing LU decomposition of spatial discretization matrix once outside the time loop. Linear stability analysis and various numerical experiments are also performed to demonstrate stability and accuracy of the proposed method. Moreover, calculation of local truncation error and an empirical convergence analysis show the fourth-order accuracy of the proposed method.
Similar content being viewed by others
References
Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)
Liu, F., Anh, V., Turner, I., Zhuang, P.: Time fractional advection-dispersion equation. J. Appl. Math. Comput. 13, 233–246 (2003)
Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resor. Res. 36, 1403–1412 (2000)
Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002)
Barkai, E., Metzler, R., Klafter, J.: From continuous time random walks to the fractional Fokker–Planck equation. Phys. Rev. E 61, 132–138 (2000)
Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Phys. A: Stat. Mech. Appl. 284, 376–384 (2000)
Wyss, W.: The fractional Black-Scholes equation. Fract. Calc. Appl Anal. 3, 51–61 (2000)
Yuste, S.B., Acedo, L., Lindenberg, K.: Reaction front in an A + BC reaction-subdiffusion process. Phys. Rev. E 69, 036126 (2004)
Yuste, S.B., Lindenberg, K.: Subdiffusion-limited A + A reactions. Phys. Rev. Lett. 87, 118301 (2001)
Mainardi, F., Luchko, Y., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, 153–192 (2001)
Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)
Tadjeran, C., Meerschaert, M.M., Scheffler, H.-P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)
Yuste, S.B., Acedo, L.: An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)
Shen, S., Liu, F., Anh, V., Turner, I.: The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation. IMA J. Appl Math. 73, 850–872 (2008)
Chen, S., Liu, F., Turner, I., Anh, V.: An implicit numerical method for the two dimensional fractional percolation equation. Appl. Math. Comput. 219, 4322–4331 (2013)
Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 24, 200–218 (2010)
Shen, S., Liu, F., Anh, V., Turner, I., Chen, J.: A novel numerical approximation for the space fractional advection-dispersion equation. IMA J. Appl. Math. 79, 1–14 (2012)
Shen, S., Liu, F., Anh, V.: Numerical approximations and solution techniques for the spacetime Riesz-caputo fractional advectiondi fusion equation. Numer. Algor. 56, 383–403 (2011)
Zhang, H., Liu, F.: Numerical simulation of the Riesz fractional diffusion equation with a nonlinear source term. J. Appl. Math. Inform. 26, 1–14 (2008)
Liu, F., Turner, I., Anh, V., Yang, Q., Burrage, K.: A numerical method for the fractional Fitzhugh-Nagumo monodomain model. ANZIAM J. 54, C608–C629 (2013)
Yu, Q., Liu, F., Turner, I., Burrage, K.: Numerical investigation of three types of space and time fractional Bloch-Torrey equations in 2D. Cent. Eur. J. Phys. 11, 646–665 (2013)
Celik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)
Liang, X., Khaliq, A.Q.M., Bhatt, H.P.: The locally extrapolated exponential splitting scheme for multi-dimensional nonlinear space-fractional Schrödinger equations. Numer. Algor. 76, 939–958 (2017)
Ortigueira, M.D.: Riesz potential operators and inveres via fractional centred derivatives. Int. J. Math. Math. Sci. 2006, 1–12 (2006). Article ID 48391
Zhou, H., Tian, W., Deng, W.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, 45–66 (2013)
Ilic, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation (II)-with nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal. 9, 333–349 (2006)
Ilic, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation I. Fract. Calc. Appl. Anal. 8, 323–341 (2005)
fei Ding, H., xin Zhang, Y.: New numerical methods for the Riesz space fractional partial differential equations. Comput. Math. Appl. 63(7), 1135–1146 (2012)
Yang, Q., Turner, I., Liu, F., Ilić, M.: Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions. SIAM J. Sci. Comput. 33(3), 1159–1180 (2011)
Aceto, L., Novati, P.: Rational approximation to the fractional Laplacian operator in reaction-diffusion problems. SIAM J. Sci. Comput. 39(1), A214–A228 (2017)
Zhao, X., Sun, Z., Hao, Z.: A fourth-order compact ADI scheme for two-dimensional nonlinear space-fractional Schrödinger equation. SIAM J. Sci. Comput. 36, A2865–A2886 (2014)
Zeng, F., Liu, F., Li, C., Burrage, K., Turner, I., Anh, V.: A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Nuer. Anal. 52, 2599–2622 (2014)
Li, C., Chen, A.: Numerical methods for fractional partial differential equations. Int. J. Comput. Math. 95(6-7), 1048–1099 (2018)
Farquhar, M.E., Moroney, T.J., Yang, Q., Turner, I.W.: GPU accelerated algorithms for computing matrix function vector products with applications to exponential integrators and fractional diffusion, SIAM J. Sci. Comput. 38(3), C127–C149
Ervin, V.J., Heuer, N., Roop, J.P.: Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation. SIAM J. Numer. Anal. 45, 572–591 (2007)
Liu, F., Yang, C., Burrage, K.: Numerical method and analytical technique of the modified anomalous subdifusion equation with a nonlinear source term. J. Comput. Appl Math. 231, 160–176 (2009)
Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional in-space reaction-diffusion equations. BIT Numer. Math. 54, 937–954 (2014)
Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)
Samko, S.G., Kilbas, A.M., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Amsterdam (1993). Translation from the Russian)
Lischke, A., Pang, G., Gulian, M., Song, F., Glusa, C., Zheng, X., Mao, Z., Cai, W., Meerschaert, M.M., Ainsworth, M., Karniadakis, G.E.: What is the fractional Laplacian? arXiv:http://arXiv.org/abs/1801.09767 (2018)
Cusimano, N., del Teso, F., Gerardo-Giorda, L., Pagnini, G.: Discretizations of the spectral fractional Laplacian on general domains with Dirichlet, Neumann, and Robin boundary conditions. SIAM J. Numer. Anal 56, 1243–1272 (2018)
Krogstad, S.: Generalized integrating factor methods for stiff PDEs. J. Comput. Phys. 203, 72–88 (2005)
Bhatt, H.P., Khaliq, A.Q.M.: Fourth-order compact schemes for the numerical simulation of coupled burgers’ equation. Comput. Phys. Commun. 200, 117–138 (2016)
Kassam, A.K., Trefethen, L.N.: Fourth-order time stepping for stiff PDEs. SIAM J. Sci. Comput. 26(4), 1214–1233 (2005)
Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comp. Phys. 176, 430–455 (2002)
Khaliq, A.Q.M., Vaquero, J.M., Wade, B.A., Yousuf, M.: Smoothing schemes for reaction-diffusion systems with nonsmooth data. J. Comput. Appl. Math. 223, 374–386 (2009)
Zhao, S., Ovadia, J., Liu, X., Zhang, Y.-T., Nie, Q.: Operator splitting implicit integration factor methods for stiff reaction-diffusion-advection systems. J. Comput. Phys. 230, 5996–6009 (2011)
Norsett, S.P., Wolfbrandt, A.: Attainable order of rational approximations to the exponential function with only real poles. BIT 17, 200–208 (1977)
Ding, H.F., Zhang, Y.X.: A new finite difference schemes for a one-space-dimensional linear hyperbolic equation. Appl. Math. Comput. 187, 1272–1276 (2007)
Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction-diffusion equation, BIT Numer. Math. 54 (2014)
Twizell, E.H., Gumel, A.B., Cao, Q.: A second-order scheme for the “Brusselator” reaction-diffusion system. J. Math. Chem. 26, 297–316 (1999)
Gray, P., Scott, S.K.: Autocatalytic reactions in the isothermal, continuous stirred tank reactor: oscillations and instabilities in the system a + b3b, bc. Chem. Eng. Sci. 39, 1087–1097 (1984)
Doelman, A., Kaper, T.J., Zegeling, P.A.: Pattern formation in the one-dimensional Gray-Scott model. Nonlinearity 10, 523–563 (1997)
Pearson, J.E.: Complex patterns in a simple system. Science 261, 189–192 (1993)
Zegeling, P.A., Kok, H.P.: Adaptive moving mesh computations for reaction-diffusion systems. J. Comput. Appl. Maths. 168, 519–528 (2004)
Acknowledgments
The authors are grateful to the editor and anonymous referees for their valuable comments and suggestions which help us to improve the quality of this manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bhatt, H.P., Khaliq, A.Q.M. & Furati, K.M. Efficient high-order compact exponential time differencing method for space-fractional reaction-diffusion systems with nonhomogeneous boundary conditions. Numer Algor 83, 1373–1397 (2020). https://doi.org/10.1007/s11075-019-00729-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-019-00729-3