[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Efficient high-order compact exponential time differencing method for space-fractional reaction-diffusion systems with nonhomogeneous boundary conditions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper introduces an efficient unconditionally stable fourth-order method for solving nonlinear space-fractional reaction-diffusion systems with nonhomogeneous Dirichlet boundary conditions on bounded domains. The proposed method is based on a compact improved matrix transformed technique for fourth-order spatial approximation and exponential time differencing approximation for fourth-order time integration. The main advantage of the improved matrix transfer technique is that it leads to a system of ordinary differential equations with spatial discretization matrix raised to the desired fractional order. The key benefit of the fourth-order exponential integrator is that it can be implemented with essentially the same computational complexity as the backward Euler method by utilizing a partial fraction splitting technique in which it is just required to solve two backward Euler-type well-conditioned linear systems at each time step by computing LU decomposition of spatial discretization matrix once outside the time loop. Linear stability analysis and various numerical experiments are also performed to demonstrate stability and accuracy of the proposed method. Moreover, calculation of local truncation error and an empirical convergence analysis show the fourth-order accuracy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Liu, F., Anh, V., Turner, I., Zhuang, P.: Time fractional advection-dispersion equation. J. Appl. Math. Comput. 13, 233–246 (2003)

    MathSciNet  MATH  Google Scholar 

  3. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resor. Res. 36, 1403–1412 (2000)

    Google Scholar 

  4. Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Barkai, E., Metzler, R., Klafter, J.: From continuous time random walks to the fractional Fokker–Planck equation. Phys. Rev. E 61, 132–138 (2000)

    MathSciNet  Google Scholar 

  6. Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Phys. A: Stat. Mech. Appl. 284, 376–384 (2000)

    MathSciNet  Google Scholar 

  7. Wyss, W.: The fractional Black-Scholes equation. Fract. Calc. Appl Anal. 3, 51–61 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Yuste, S.B., Acedo, L., Lindenberg, K.: Reaction front in an A + BC reaction-subdiffusion process. Phys. Rev. E 69, 036126 (2004)

    Google Scholar 

  9. Yuste, S.B., Lindenberg, K.: Subdiffusion-limited A + A reactions. Phys. Rev. Lett. 87, 118301 (2001)

    Google Scholar 

  10. Mainardi, F., Luchko, Y., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, 153–192 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Tadjeran, C., Meerschaert, M.M., Scheffler, H.-P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Yuste, S.B., Acedo, L.: An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Shen, S., Liu, F., Anh, V., Turner, I.: The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation. IMA J. Appl Math. 73, 850–872 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Chen, S., Liu, F., Turner, I., Anh, V.: An implicit numerical method for the two dimensional fractional percolation equation. Appl. Math. Comput. 219, 4322–4331 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 24, 200–218 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Shen, S., Liu, F., Anh, V., Turner, I., Chen, J.: A novel numerical approximation for the space fractional advection-dispersion equation. IMA J. Appl. Math. 79, 1–14 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Shen, S., Liu, F., Anh, V.: Numerical approximations and solution techniques for the spacetime Riesz-caputo fractional advectiondi fusion equation. Numer. Algor. 56, 383–403 (2011)

    MATH  Google Scholar 

  19. Zhang, H., Liu, F.: Numerical simulation of the Riesz fractional diffusion equation with a nonlinear source term. J. Appl. Math. Inform. 26, 1–14 (2008)

    Google Scholar 

  20. Liu, F., Turner, I., Anh, V., Yang, Q., Burrage, K.: A numerical method for the fractional Fitzhugh-Nagumo monodomain model. ANZIAM J. 54, C608–C629 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Yu, Q., Liu, F., Turner, I., Burrage, K.: Numerical investigation of three types of space and time fractional Bloch-Torrey equations in 2D. Cent. Eur. J. Phys. 11, 646–665 (2013)

    Google Scholar 

  22. Celik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Liang, X., Khaliq, A.Q.M., Bhatt, H.P.: The locally extrapolated exponential splitting scheme for multi-dimensional nonlinear space-fractional Schrödinger equations. Numer. Algor. 76, 939–958 (2017)

    MATH  Google Scholar 

  24. Ortigueira, M.D.: Riesz potential operators and inveres via fractional centred derivatives. Int. J. Math. Math. Sci. 2006, 1–12 (2006). Article ID 48391

    Google Scholar 

  25. Zhou, H., Tian, W., Deng, W.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, 45–66 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Ilic, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation (II)-with nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal. 9, 333–349 (2006)

    MathSciNet  MATH  Google Scholar 

  27. Ilic, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation I. Fract. Calc. Appl. Anal. 8, 323–341 (2005)

    MathSciNet  MATH  Google Scholar 

  28. fei Ding, H., xin Zhang, Y.: New numerical methods for the Riesz space fractional partial differential equations. Comput. Math. Appl. 63(7), 1135–1146 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Yang, Q., Turner, I., Liu, F., Ilić, M.: Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions. SIAM J. Sci. Comput. 33(3), 1159–1180 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Aceto, L., Novati, P.: Rational approximation to the fractional Laplacian operator in reaction-diffusion problems. SIAM J. Sci. Comput. 39(1), A214–A228 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Zhao, X., Sun, Z., Hao, Z.: A fourth-order compact ADI scheme for two-dimensional nonlinear space-fractional Schrödinger equation. SIAM J. Sci. Comput. 36, A2865–A2886 (2014)

    MATH  Google Scholar 

  32. Zeng, F., Liu, F., Li, C., Burrage, K., Turner, I., Anh, V.: A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Nuer. Anal. 52, 2599–2622 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Li, C., Chen, A.: Numerical methods for fractional partial differential equations. Int. J. Comput. Math. 95(6-7), 1048–1099 (2018)

    MathSciNet  Google Scholar 

  34. Farquhar, M.E., Moroney, T.J., Yang, Q., Turner, I.W.: GPU accelerated algorithms for computing matrix function vector products with applications to exponential integrators and fractional diffusion, SIAM J. Sci. Comput. 38(3), C127–C149

  35. Ervin, V.J., Heuer, N., Roop, J.P.: Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation. SIAM J. Numer. Anal. 45, 572–591 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Liu, F., Yang, C., Burrage, K.: Numerical method and analytical technique of the modified anomalous subdifusion equation with a nonlinear source term. J. Comput. Appl Math. 231, 160–176 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional in-space reaction-diffusion equations. BIT Numer. Math. 54, 937–954 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Samko, S.G., Kilbas, A.M., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Amsterdam (1993). Translation from the Russian)

    MATH  Google Scholar 

  40. Lischke, A., Pang, G., Gulian, M., Song, F., Glusa, C., Zheng, X., Mao, Z., Cai, W., Meerschaert, M.M., Ainsworth, M., Karniadakis, G.E.: What is the fractional Laplacian? arXiv:http://arXiv.org/abs/1801.09767 (2018)

  41. Cusimano, N., del Teso, F., Gerardo-Giorda, L., Pagnini, G.: Discretizations of the spectral fractional Laplacian on general domains with Dirichlet, Neumann, and Robin boundary conditions. SIAM J. Numer. Anal 56, 1243–1272 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Krogstad, S.: Generalized integrating factor methods for stiff PDEs. J. Comput. Phys. 203, 72–88 (2005)

    MathSciNet  MATH  Google Scholar 

  43. Bhatt, H.P., Khaliq, A.Q.M.: Fourth-order compact schemes for the numerical simulation of coupled burgers’ equation. Comput. Phys. Commun. 200, 117–138 (2016)

    MathSciNet  MATH  Google Scholar 

  44. Kassam, A.K., Trefethen, L.N.: Fourth-order time stepping for stiff PDEs. SIAM J. Sci. Comput. 26(4), 1214–1233 (2005)

    MathSciNet  MATH  Google Scholar 

  45. Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comp. Phys. 176, 430–455 (2002)

    MathSciNet  MATH  Google Scholar 

  46. Khaliq, A.Q.M., Vaquero, J.M., Wade, B.A., Yousuf, M.: Smoothing schemes for reaction-diffusion systems with nonsmooth data. J. Comput. Appl. Math. 223, 374–386 (2009)

    MathSciNet  MATH  Google Scholar 

  47. Zhao, S., Ovadia, J., Liu, X., Zhang, Y.-T., Nie, Q.: Operator splitting implicit integration factor methods for stiff reaction-diffusion-advection systems. J. Comput. Phys. 230, 5996–6009 (2011)

    MathSciNet  MATH  Google Scholar 

  48. Norsett, S.P., Wolfbrandt, A.: Attainable order of rational approximations to the exponential function with only real poles. BIT 17, 200–208 (1977)

    MathSciNet  MATH  Google Scholar 

  49. Ding, H.F., Zhang, Y.X.: A new finite difference schemes for a one-space-dimensional linear hyperbolic equation. Appl. Math. Comput. 187, 1272–1276 (2007)

    MathSciNet  Google Scholar 

  50. Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction-diffusion equation, BIT Numer. Math. 54 (2014)

  51. Twizell, E.H., Gumel, A.B., Cao, Q.: A second-order scheme for the “Brusselator” reaction-diffusion system. J. Math. Chem. 26, 297–316 (1999)

    MathSciNet  MATH  Google Scholar 

  52. Gray, P., Scott, S.K.: Autocatalytic reactions in the isothermal, continuous stirred tank reactor: oscillations and instabilities in the system a + b3b, bc. Chem. Eng. Sci. 39, 1087–1097 (1984)

    Google Scholar 

  53. Doelman, A., Kaper, T.J., Zegeling, P.A.: Pattern formation in the one-dimensional Gray-Scott model. Nonlinearity 10, 523–563 (1997)

    MathSciNet  MATH  Google Scholar 

  54. Pearson, J.E.: Complex patterns in a simple system. Science 261, 189–192 (1993)

    Google Scholar 

  55. Zegeling, P.A., Kok, H.P.: Adaptive moving mesh computations for reaction-diffusion systems. J. Comput. Appl. Maths. 168, 519–528 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the editor and anonymous referees for their valuable comments and suggestions which help us to improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Bhatt.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, H.P., Khaliq, A.Q.M. & Furati, K.M. Efficient high-order compact exponential time differencing method for space-fractional reaction-diffusion systems with nonhomogeneous boundary conditions. Numer Algor 83, 1373–1397 (2020). https://doi.org/10.1007/s11075-019-00729-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00729-3

Keywords

Navigation