[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Symplectic simulation of dark solitons motion for nonlinear Schrödinger equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we study symplectic simulation of dark solitons motion of nonlinear Schrödinger equation (NLSE). The Ablowitz-Ladik model (A-L model) of NLSE can be expressed as a non-canonical Hamiltonian system. By using splitting technique, we construct explicit splitting K-symplectic methods for the A-L model. On the other hand, the A-L model can be transformed into a canonical system and standard symplectic methods can be employed to perform numerical simulation. A second order K-symplectic method and a second order symplectic method are employed to simulate one dark soliton and two dark solitons motion for the A-L model and its canonicalized system respectively. By comparing with a third-order non-symplectic Runge-Kutta method, we show the superiorities of the two symplectic methods in long-term tracking the motion of dark solitons and preserving the invariants. We also compare the CPU times of K-symplectic methods and standard symplectic methods and show that the former ones are more efficient. The energy-preserving scheme is also applied for non-canonical Hamiltonian systems. The numerical results demonstrate that the K-symplectic methods can nearly preserve the energy, the discrete invariants of A-L model and conserved quantities of NLSE, but the energy-preserving scheme can only exactly preserve the energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ablowitz, M.J., Ladik, J.F.: Nonlinear differential-difference equations and fourier analysis. J. Math. Phys. 17(6), 1011–1018 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abraham, R.E., Marsden, J.E.: Foundations of mechanics. Benjamin-Cummings, Reading (1978)

    MATH  Google Scholar 

  3. Arnold, V.I.: Mathematical methods of classical mechanics. Springer, New York (1978)

    Book  Google Scholar 

  4. Barletti, L., Brugnano, L., Frasca Caccia, G., Iavernaro, F.: Energy-conserving methods for the nonlinear Schrödinger equation. Appl. Math. Comput. 318, 3–18 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Blanes, S., Moan, P.C.: Practical symplectic Runge-Kutta and Runge-Kutta-Nyström methods. J. Comput. Appl. Math. 142, 313–330 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brugnano, L., Zhang, C.J., Li, D.F.: A class of energy-conserving Hamiltonian boundary value methods for nonlinear Schrödinger equation with wave operator. Commun. Nonlinear Sci. Numer. Simulat. 60, 33–49 (2018)

    Article  Google Scholar 

  7. Butcher, J.C.: Implicit Runge-Kutta processes. Math. Comput. 18, 50–64 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cai, J.X., Wang, Y.S.: Local structure-preserving algorithms for the “good” Boussinesq equation. J. Comput. Phys. 239, 72–89 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Celledoni, E., Owren, B., Sun, Y.: The minimal stage, energy preserving Runge-Kutta method for polynomial Hamiltonian systems is the Averaged Vector Field method. Math. Comp. 83, 1689–1700 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Channell, P.J., Scovel, J.C.: Symplectic integration of hamiltonian systems. Nonlinearity 3(2), 231–259 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cooper, G.J.: Stability of Runge-Kutta Methods for Trajectory Problems. IMA J. Numer. Anal. 7, 1–13 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dodd, R.K., Eibeck, J.C., Gibbon, J.D., Morris, H.: Solitons and nonlinear wave equation. Academic Press (1982)

  13. Feng, K.: On difference schemes and symplectic geometry Feng, K. (ed.) . Science Press, Beijing (1985)

  14. Ge, Z., Feng, K.: On the approximation of linear Hamiltonian systems. J. Computa. Math. 6(1), 88–97 (1988)

    MathSciNet  MATH  Google Scholar 

  15. Hairer, E., Lubich, C.h., Wanner, G.: Geometric numerical integration. Springer, New York (2002)

    Book  MATH  Google Scholar 

  16. Hasegawa, A.: Optical solitons in fibers. Springer-Verlag, Berlin (1989)

    Book  Google Scholar 

  17. Herbst, B.M., Varadi, F., Ablowitz, M.J.: Symplectic methods for the nonlinear Schrödinger equation. Math. Comput. Simul. 37, 353–369 (1994)

    Article  MATH  Google Scholar 

  18. Konotop, V.V., Vázquez, L.: Nonlinear random waves. World Scientific, Singapore (1994)

    Book  MATH  Google Scholar 

  19. Konotop, V.V., Vekslerchik, V.E.: Randomly modulated dark soliton. J. Phys. A: Math. Gen. 24, 767–785 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Konotop, V.V., Tang, Y.F.: Personal communication (1996)

  21. McLachlan, R.I., Quispel, G.R., Robidoux, N.: Unified approach to Hamiltonian systems, poisson systems, gradient systems, and systems with Lyapunov functions or first integrals. Phys. Rev. Lett. 81, 2399–2403 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. Phil. Trans. Roy. Soc. A 357, 1021–1045 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Miles, J.W.: An envelope soliton problem. SIAM J. Appl. Math. 41(2), 227–230 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  24. Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A: Math. Theor. 41, 045206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sanz-Serna, J.M.: Runge-Kutta schemes for Hamiltonian systems. BIT Numer. Math. 28, 877–883 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian problems. Chapman & Hall, London (1994)

    Book  MATH  Google Scholar 

  27. Schober, C.M.: Symplectic integrators for the Ablowitz-Ladik discrete nonlinear Schrödinger equation. Phys. Lett. A 259, 140–151 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 507–517 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tang, Y.F., Cao, J.W., Liu, X.T., Sun, Y.C.: Symplectic methods for Ablowitz-Ladik discrete nonlinear Schrödinger equation. J. Phys. A: Math. Theor. 40(10), 2425–2437 (2007)

    Article  MATH  Google Scholar 

  30. Tang, Y.F., Pérez-García V.M., Vázquez, L.: Symplectic methods for the Ablowitz-Ladik model. Appli. Math. Comput. 82, 17–38 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zakharov, V.E., Shabat, A.B.: Interaction between solitions in a stable medium. Sov. Phys.-JETP 37(5), 823–828 (1973)

    Google Scholar 

  32. Zhang, F., Pérez-García V.M., Vázquez, L.: Numerical simulation of nonlinear Schrödinger systems: A new conservative scheme. Appl. Math. Comput. 71(2-3), 165–177 (1995)

    MathSciNet  MATH  Google Scholar 

  33. Zhang, R.L., Huang, J.F., Tang, Y.F., Vázquez, L.: Revertible and symplectic methods for the Ablowitz-Ladik discrete nonlinear Schrödinger equation. In: Proceedings of the 2011 summer simulation multiconference (27–29 June — The Hague, Netherlands): Grand Challenges in Modeling and Simulation (GCMS’11), ISBN: 1-56555-345-4, The Society for Modeling and Simulation International (SCS), San Diego USA (2011)

  34. Zhou, Z.Q., He, Y., Sun, Y.J., Liu, J., Qin, H.: Explicit symplectic methods for solving charged particle trajectories. Phys. Plasmas 24, 87–94 (2017)

    Article  Google Scholar 

  35. Zhu, B.B., Zhang, R.L., Tang, Y.F., Tu, X.B., Zhao, Y.: Splitting K-symplectic methods for non-canonical separable Hamiltonian problems. J. Computa. Phys. 322(10), 387–399 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Zhaoqi Zhou for useful discussion in energy-preserving method.

Funding

This research is supported by the National Natural Science Foundation of China (Grant No. 11771438). Beibei Zhu was supported by the National Center for Mathematics and Interdisciplinary Sciences, CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beibei Zhu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Tang, Y., Zhang, R. et al. Symplectic simulation of dark solitons motion for nonlinear Schrödinger equation. Numer Algor 81, 1485–1503 (2019). https://doi.org/10.1007/s11075-019-00708-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00708-8

Keywords

Navigation