Abstract
In this paper, we study symplectic simulation of dark solitons motion of nonlinear Schrödinger equation (NLSE). The Ablowitz-Ladik model (A-L model) of NLSE can be expressed as a non-canonical Hamiltonian system. By using splitting technique, we construct explicit splitting K-symplectic methods for the A-L model. On the other hand, the A-L model can be transformed into a canonical system and standard symplectic methods can be employed to perform numerical simulation. A second order K-symplectic method and a second order symplectic method are employed to simulate one dark soliton and two dark solitons motion for the A-L model and its canonicalized system respectively. By comparing with a third-order non-symplectic Runge-Kutta method, we show the superiorities of the two symplectic methods in long-term tracking the motion of dark solitons and preserving the invariants. We also compare the CPU times of K-symplectic methods and standard symplectic methods and show that the former ones are more efficient. The energy-preserving scheme is also applied for non-canonical Hamiltonian systems. The numerical results demonstrate that the K-symplectic methods can nearly preserve the energy, the discrete invariants of A-L model and conserved quantities of NLSE, but the energy-preserving scheme can only exactly preserve the energy.
Similar content being viewed by others
References
Ablowitz, M.J., Ladik, J.F.: Nonlinear differential-difference equations and fourier analysis. J. Math. Phys. 17(6), 1011–1018 (1976)
Abraham, R.E., Marsden, J.E.: Foundations of mechanics. Benjamin-Cummings, Reading (1978)
Arnold, V.I.: Mathematical methods of classical mechanics. Springer, New York (1978)
Barletti, L., Brugnano, L., Frasca Caccia, G., Iavernaro, F.: Energy-conserving methods for the nonlinear Schrödinger equation. Appl. Math. Comput. 318, 3–18 (2018)
Blanes, S., Moan, P.C.: Practical symplectic Runge-Kutta and Runge-Kutta-Nyström methods. J. Comput. Appl. Math. 142, 313–330 (2002)
Brugnano, L., Zhang, C.J., Li, D.F.: A class of energy-conserving Hamiltonian boundary value methods for nonlinear Schrödinger equation with wave operator. Commun. Nonlinear Sci. Numer. Simulat. 60, 33–49 (2018)
Butcher, J.C.: Implicit Runge-Kutta processes. Math. Comput. 18, 50–64 (1964)
Cai, J.X., Wang, Y.S.: Local structure-preserving algorithms for the “good” Boussinesq equation. J. Comput. Phys. 239, 72–89 (2013)
Celledoni, E., Owren, B., Sun, Y.: The minimal stage, energy preserving Runge-Kutta method for polynomial Hamiltonian systems is the Averaged Vector Field method. Math. Comp. 83, 1689–1700 (2014)
Channell, P.J., Scovel, J.C.: Symplectic integration of hamiltonian systems. Nonlinearity 3(2), 231–259 (1990)
Cooper, G.J.: Stability of Runge-Kutta Methods for Trajectory Problems. IMA J. Numer. Anal. 7, 1–13 (1987)
Dodd, R.K., Eibeck, J.C., Gibbon, J.D., Morris, H.: Solitons and nonlinear wave equation. Academic Press (1982)
Feng, K.: On difference schemes and symplectic geometry Feng, K. (ed.) . Science Press, Beijing (1985)
Ge, Z., Feng, K.: On the approximation of linear Hamiltonian systems. J. Computa. Math. 6(1), 88–97 (1988)
Hairer, E., Lubich, C.h., Wanner, G.: Geometric numerical integration. Springer, New York (2002)
Hasegawa, A.: Optical solitons in fibers. Springer-Verlag, Berlin (1989)
Herbst, B.M., Varadi, F., Ablowitz, M.J.: Symplectic methods for the nonlinear Schrödinger equation. Math. Comput. Simul. 37, 353–369 (1994)
Konotop, V.V., Vázquez, L.: Nonlinear random waves. World Scientific, Singapore (1994)
Konotop, V.V., Vekslerchik, V.E.: Randomly modulated dark soliton. J. Phys. A: Math. Gen. 24, 767–785 (1991)
Konotop, V.V., Tang, Y.F.: Personal communication (1996)
McLachlan, R.I., Quispel, G.R., Robidoux, N.: Unified approach to Hamiltonian systems, poisson systems, gradient systems, and systems with Lyapunov functions or first integrals. Phys. Rev. Lett. 81, 2399–2403 (1998)
McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. Phil. Trans. Roy. Soc. A 357, 1021–1045 (1999)
Miles, J.W.: An envelope soliton problem. SIAM J. Appl. Math. 41(2), 227–230 (1981)
Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A: Math. Theor. 41, 045206 (2008)
Sanz-Serna, J.M.: Runge-Kutta schemes for Hamiltonian systems. BIT Numer. Math. 28, 877–883 (1988)
Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian problems. Chapman & Hall, London (1994)
Schober, C.M.: Symplectic integrators for the Ablowitz-Ladik discrete nonlinear Schrödinger equation. Phys. Lett. A 259, 140–151 (1999)
Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 507–517 (1968)
Tang, Y.F., Cao, J.W., Liu, X.T., Sun, Y.C.: Symplectic methods for Ablowitz-Ladik discrete nonlinear Schrödinger equation. J. Phys. A: Math. Theor. 40(10), 2425–2437 (2007)
Tang, Y.F., Pérez-García V.M., Vázquez, L.: Symplectic methods for the Ablowitz-Ladik model. Appli. Math. Comput. 82, 17–38 (1997)
Zakharov, V.E., Shabat, A.B.: Interaction between solitions in a stable medium. Sov. Phys.-JETP 37(5), 823–828 (1973)
Zhang, F., Pérez-García V.M., Vázquez, L.: Numerical simulation of nonlinear Schrödinger systems: A new conservative scheme. Appl. Math. Comput. 71(2-3), 165–177 (1995)
Zhang, R.L., Huang, J.F., Tang, Y.F., Vázquez, L.: Revertible and symplectic methods for the Ablowitz-Ladik discrete nonlinear Schrödinger equation. In: Proceedings of the 2011 summer simulation multiconference (27–29 June — The Hague, Netherlands): Grand Challenges in Modeling and Simulation (GCMS’11), ISBN: 1-56555-345-4, The Society for Modeling and Simulation International (SCS), San Diego USA (2011)
Zhou, Z.Q., He, Y., Sun, Y.J., Liu, J., Qin, H.: Explicit symplectic methods for solving charged particle trajectories. Phys. Plasmas 24, 87–94 (2017)
Zhu, B.B., Zhang, R.L., Tang, Y.F., Tu, X.B., Zhao, Y.: Splitting K-symplectic methods for non-canonical separable Hamiltonian problems. J. Computa. Phys. 322(10), 387–399 (2016)
Acknowledgements
We are grateful to Zhaoqi Zhou for useful discussion in energy-preserving method.
Funding
This research is supported by the National Natural Science Foundation of China (Grant No. 11771438). Beibei Zhu was supported by the National Center for Mathematics and Interdisciplinary Sciences, CAS.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhu, B., Tang, Y., Zhang, R. et al. Symplectic simulation of dark solitons motion for nonlinear Schrödinger equation. Numer Algor 81, 1485–1503 (2019). https://doi.org/10.1007/s11075-019-00708-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-019-00708-8