Abstract
This paper provides an unconditional optimal convergence of a fractional-step method for solving the Boussinesq equations. In this method, the convection is treated by the Lagrange-Galerkin technique, whereas the diffusion and the incompressibility are treated by the projection method. There are lots of authors who worked on this method, and some authors gave the error estimate of this method. But, to our best knowledge, the error estimate for this method is under certain time-step restrictions. In this paper, we prove that the methods are stable almost unconditionally, i.e., when τ and h are smaller than a given constant. The basic idea of our analysis is splitting the error function into three terms, one term between the finite element solution and the projection, the other term between the projection and the time-discrete solution, the third term between the time-discrete solution and the exact solution, and giving the error estimates for each term respectively. Then, we obtain the optimal error estimates in L2 and H1-norm for the velocity and L2-norm for the pressure. In order to show the efficiency of our method, some numerical results are presented.
Similar content being viewed by others
References
Achdou, Y., Guermond, J.L.: Convergence analysis of a finite element projection/Lagrange-Galerkin method for the incompressible Navier-Stokes equations. SIAM J. Numer. Anal. 37, 799–826 (2000)
Adams, R.A.: Sobolev Space Pure and Applied Mathematics, vol. 65. Academic press, New York (1975)
Allievi, A., Bermejo, R.: Finite element modified method of characteristics for the Navier-Stokes equations. Int. J. Numer. Meth. Fluids 32, 439–464 (2000)
Arbogast, T., Wheeler, M.F.: A characteristics-mixed finite element method for advection-dominated transport problems. SIAM J. Numer. Anal 32(2), 404–424 (1995)
Bermejo, R., del Sastre, P., Saavedra, L.: A second order in time modified Lagrange-Galerkin finite element method for the incompressible Navier-Stokes equations. SIAM J Numer Anal 50, 3084–3109 (2012)
Bermejo, R., Saavedra, L.: Modified Lagrange-Galerkin methods of first and second order in time for convection-diffusion problems. Numer. Math. 120, 601–638 (2012)
Boland, J., Layton, W.: Error analysis for finite element method for natural convection problems. Numer. Funct. Anal. Optimiz. 11, 449–483 (1990)
Boukir, K., Maday, Y., MéTivet, B.: A high order characteristics method for the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 116, 211–218 (1994)
Boukir, K., Maday, Y., MéTivet, B., Razafindrakoto, E.: A higher-order characteristics/finite element method for the incompressible Navier-Stokes equations. Int. J. Numer. Math. Fluids 25, 1421–1454 (1997)
Boukir, K., Nitrosso, B., Maury, B.: A characteristics-ALE method for variable domain Navier-Stokes equations. In: Wrobel, L. C., Sarler, B., Brebbia, C. A. (eds.) Computational Modelling of Free and Moving Boundary Problems III, pp 57–65. Comput. Mech. Publ, Southampton/Boston (1995)
Buscaglia, G.C., Dari, E.A.: Implementation of the Lagrange-Galerkin method for the incompressible for the incompressible Navier-Stokes equations. Int. J. Numer. Methods fluids 15, 23–36 (1992)
Chen, Z.X.: Characteristic mixed discontinuous finite element methods for advection-dominated diifusion problems. Comput. Methods Appl. Mech. Engrg. 191, 2509–2538 (2002)
Chen, Z.X., Ewing, R.E., Jiang, Q., Spagnuolo, A.M.: Error analysis for characteristics-based methods for degenerate parabolic problems. SIAM J. Numer. Anal. 40(4), 1491–1515 (2002)
Dawson, C.N., Russell, T.F., Wheeler, M.F.: Some improved error estimates for the modified method of characteristics. SIAM J. Numer. Anal. 26(6), 1487–1512 (1989)
Douglas, J. Jr., Pereira, F., Yeh, L.M.: A locally conservative Eulerian-Lagrangian numerical method and its application to nonlinear transport in porous media. Comput. Geosci. 4, 1–40 (2000)
Douglas, J. Jr., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combing the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982)
Ewing, R.E., Russell, T.F.: Multistep Galerkin method along characteristics for convection-diffusion problems. In: Vichnevestsky, R., Steoleman, R.S. (eds.) Adv. Comput. Methods P.D.E., pp 28–36 (1981)
Ewing, R.E., Wang, H.: A summary of numerical methods for time-dependent advection-dominated partial differential equations. J. Comput. Appl. Math. 128, 423–445 (2001)
Ewing, R., Wang, H.: Hennart Eulerian-Lagrangian localized adjoint methods for variable-coefficient advective-diffusive-reactive equations in groundwater contaminant transport. In: Gomez, S, Hennart, J.-P. (eds.) Advances in optimization and numerical analysis, pp 185–205. Springer, Netherlands (1994)
Ewing, R., Wang, H.: An optimal-order estimate for Eulerian/Lagrangian localized adjoint methods for variable-coefficient advection-reaction problems. SIAM J. Numer. Anal. 33, 318–348 (1996)
Garder, A.O., Peaceman, D.W., Pozzi, A.L.: Numerical calculations of multidimensional miscible displacement by the method of characteristics. Soc. Pet. Eng. J. 4, 26–36 (1964)
Girault, V., Nochetto, R.H., Scott, R.: Maximum-norm stability of the finite element Stokes projection. J. Math. Pure Appl. 84, 279–330 (2005)
Girault, V., Raviart, P.A.: Finite Element Method for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag, Berlin (1987)
Guzman, J., Leykekhman, D.: Pointwise error estimates of finite element approximations to the Stokes problem on convex polyhedra. Math Comp. 81, 1879–1902 (2012)
Hansbo, P.: The characteristic streamline diffusion method for the time-dependent incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 99, 171–186 (1992)
He, Y.N.: Optimal error estimate of the penalty finite element method for the time-dependent Navier-Stokes equations. Math. Comput. 74, 1201–1216 (2005)
He, Y.N., Sun, W.W.: Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal. 45(2), 837–869 (2007)
He, Y.N., Wang, A.W.: A simplified two-level method for the steady Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 197, 1568–1576 (2008)
Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–265 (2012)
Kim, D., Choi, Y.: Analysis of conduction-natural convection conjugate heat transfer in the gap between concentric cylinders under solar irradiation. Int. J. Thermal Sci. 48, 1247–1258 (2009)
Luo, Z., Chen, J., Navon, I.M., Zhu, J.: An optimizing reduced PLSMFE formulation for non-stationary conduction-convection problems. Int. J. Numer. Meth. Fluids 60, 409–436 (2009)
Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Modeling 10, 622–633 (2013)
Nochetto, R., Pyo, J.H.: The finite element Gauge-Uzawa method. Part II: the Boussinesq equations. Mathematical Models and Methods in Applied Sciences 16(10), 1599–1626 (2006)
Pironnequ, O.: On the transport-diffusion algorithm and it’s applications to the Navier-Stokes equations. Numer. Math. 38, 309–332 (1982)
Russell, T.F.: Time stepping along characteristics with incomplete iteration for a Galerkin approximation of miscible displacement in porous media. SIAM J. Numer. Anal. 22(5), 970–1013 (1985)
Sesterhenn, J.: A characteristic-type formulation of the Navier-Stokes equations for high order upwind schemes. Comput. Fluids 30, 37–67 (2001)
Si, Z.Y.: Second order modified method of characteristics mixed defect-correction finite element method for time dependent Navier-Stokes problems. Numer. Algor. 59(2), 271–300 (2012)
Si, Z.Y., He, Y.N.: A coupled Newton iterative mixed finite element method for stationary conduction-convection problems. Computing 89(1–2), 1–25 (2010)
Si, Z.Y., He, Y.N.: A defect-correction mixed finite element method for stationary conduction-convection problems, Math. Prob. Engine., 2011, Article ID 370192, 28 pages,. https://doi.org/10.1155/2011/370192
Si, Z.Y., He, Y.N., Wang, K.: A defect-correction method for unsteady conduction convection problems I: spatial discretization. Sci. China. Math. 54, 185–204 (2011)
Si, Z.Y., He, Y.N., Zhang, T.: A defect-correction method for unsteady conduction-convection problems II: time discretization. J. Comput. Appl. Math. 236 (9), 2553–2573 (2012)
Si, Z.Y., Shang, Y.Q., Zhang, T.: New one- and two-level Newton iterative mixed finite element methods for stationary conduction-convection problem. Finite Elem. Anal Des. 47, 175–183 (2011)
Si, Z.Y., Wang, J.L., Sun, W.W.: Unconditional stability and error estimates of modified characteristics FEMs for the Navier-Stokes equations, Numer. Math. https://doi.org/10.1007/s00211-015-0767-9 (2015)
Si, Z.Y., Zhang, T., Wang, K.: A Newton iterative scheme mixed finite element method for stationary conduction-convection problems. Int. J. Comput. Fluid Dyn. 24, 135–141 (2010)
Süli, E.: Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations. Numer. Math. 53, 459–483 (1998)
Sun, W.W., Sun, Z.Z.: Finite difference methods for a nonlinear and strongly coupled heat and moisture transport system in textile materials. Numer. Math. 120, 153–187 (2012)
Wang, J., Si, Z., Sun, W.: A new error analysis of characteristics-mixed FEMs for miscible displacement in porous media. SIAM J. Numer. Anal. 52, 3000–3020 (2014)
Wang, H.: An optimal-order error estimate for a family of ELLAM-MFEM approximations to porous medium flow. SIAM J. Numer. Anal. 46, 2133–2152 (2008)
Acknowledgements
The authors would like to thank the anonymous referees for their valuable suggestions and comments, which helped to improve the quality of the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work was supported by the China Postdoctoral Science Foundation (No. 2018M630907) and Key scientific research projects of Henan colleges and Universities (No. 19B110007).
Rights and permissions
About this article
Cite this article
Si, Z., Lei, Y. & Tong, Z. Unconditional optimal error estimate of the projection/Lagrange-Galerkin finite element method for the Boussinesq equations. Numer Algor 83, 669–700 (2020). https://doi.org/10.1007/s11075-019-00698-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-019-00698-7