[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Unconditional optimal error estimate of the projection/Lagrange-Galerkin finite element method for the Boussinesq equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper provides an unconditional optimal convergence of a fractional-step method for solving the Boussinesq equations. In this method, the convection is treated by the Lagrange-Galerkin technique, whereas the diffusion and the incompressibility are treated by the projection method. There are lots of authors who worked on this method, and some authors gave the error estimate of this method. But, to our best knowledge, the error estimate for this method is under certain time-step restrictions. In this paper, we prove that the methods are stable almost unconditionally, i.e., when τ and h are smaller than a given constant. The basic idea of our analysis is splitting the error function into three terms, one term between the finite element solution and the projection, the other term between the projection and the time-discrete solution, the third term between the time-discrete solution and the exact solution, and giving the error estimates for each term respectively. Then, we obtain the optimal error estimates in L2 and H1-norm for the velocity and L2-norm for the pressure. In order to show the efficiency of our method, some numerical results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achdou, Y., Guermond, J.L.: Convergence analysis of a finite element projection/Lagrange-Galerkin method for the incompressible Navier-Stokes equations. SIAM J. Numer. Anal. 37, 799–826 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Adams, R.A.: Sobolev Space Pure and Applied Mathematics, vol. 65. Academic press, New York (1975)

    Google Scholar 

  3. Allievi, A., Bermejo, R.: Finite element modified method of characteristics for the Navier-Stokes equations. Int. J. Numer. Meth. Fluids 32, 439–464 (2000)

    MATH  Google Scholar 

  4. Arbogast, T., Wheeler, M.F.: A characteristics-mixed finite element method for advection-dominated transport problems. SIAM J. Numer. Anal 32(2), 404–424 (1995)

    MathSciNet  MATH  Google Scholar 

  5. Bermejo, R., del Sastre, P., Saavedra, L.: A second order in time modified Lagrange-Galerkin finite element method for the incompressible Navier-Stokes equations. SIAM J Numer Anal 50, 3084–3109 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Bermejo, R., Saavedra, L.: Modified Lagrange-Galerkin methods of first and second order in time for convection-diffusion problems. Numer. Math. 120, 601–638 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Boland, J., Layton, W.: Error analysis for finite element method for natural convection problems. Numer. Funct. Anal. Optimiz. 11, 449–483 (1990)

    MathSciNet  MATH  Google Scholar 

  8. Boukir, K., Maday, Y., MéTivet, B.: A high order characteristics method for the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 116, 211–218 (1994)

    MathSciNet  MATH  Google Scholar 

  9. Boukir, K., Maday, Y., MéTivet, B., Razafindrakoto, E.: A higher-order characteristics/finite element method for the incompressible Navier-Stokes equations. Int. J. Numer. Math. Fluids 25, 1421–1454 (1997)

    MATH  Google Scholar 

  10. Boukir, K., Nitrosso, B., Maury, B.: A characteristics-ALE method for variable domain Navier-Stokes equations. In: Wrobel, L. C., Sarler, B., Brebbia, C. A. (eds.) Computational Modelling of Free and Moving Boundary Problems III, pp 57–65. Comput. Mech. Publ, Southampton/Boston (1995)

  11. Buscaglia, G.C., Dari, E.A.: Implementation of the Lagrange-Galerkin method for the incompressible for the incompressible Navier-Stokes equations. Int. J. Numer. Methods fluids 15, 23–36 (1992)

    MATH  Google Scholar 

  12. Chen, Z.X.: Characteristic mixed discontinuous finite element methods for advection-dominated diifusion problems. Comput. Methods Appl. Mech. Engrg. 191, 2509–2538 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Chen, Z.X., Ewing, R.E., Jiang, Q., Spagnuolo, A.M.: Error analysis for characteristics-based methods for degenerate parabolic problems. SIAM J. Numer. Anal. 40(4), 1491–1515 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Dawson, C.N., Russell, T.F., Wheeler, M.F.: Some improved error estimates for the modified method of characteristics. SIAM J. Numer. Anal. 26(6), 1487–1512 (1989)

    MathSciNet  MATH  Google Scholar 

  15. Douglas, J. Jr., Pereira, F., Yeh, L.M.: A locally conservative Eulerian-Lagrangian numerical method and its application to nonlinear transport in porous media. Comput. Geosci. 4, 1–40 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Douglas, J. Jr., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combing the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982)

    MathSciNet  MATH  Google Scholar 

  17. Ewing, R.E., Russell, T.F.: Multistep Galerkin method along characteristics for convection-diffusion problems. In: Vichnevestsky, R., Steoleman, R.S. (eds.) Adv. Comput. Methods P.D.E., pp 28–36 (1981)

  18. Ewing, R.E., Wang, H.: A summary of numerical methods for time-dependent advection-dominated partial differential equations. J. Comput. Appl. Math. 128, 423–445 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Ewing, R., Wang, H.: Hennart Eulerian-Lagrangian localized adjoint methods for variable-coefficient advective-diffusive-reactive equations in groundwater contaminant transport. In: Gomez, S, Hennart, J.-P. (eds.) Advances in optimization and numerical analysis, pp 185–205. Springer, Netherlands (1994)

    Google Scholar 

  20. Ewing, R., Wang, H.: An optimal-order estimate for Eulerian/Lagrangian localized adjoint methods for variable-coefficient advection-reaction problems. SIAM J. Numer. Anal. 33, 318–348 (1996)

    MathSciNet  MATH  Google Scholar 

  21. Garder, A.O., Peaceman, D.W., Pozzi, A.L.: Numerical calculations of multidimensional miscible displacement by the method of characteristics. Soc. Pet. Eng. J. 4, 26–36 (1964)

    Google Scholar 

  22. Girault, V., Nochetto, R.H., Scott, R.: Maximum-norm stability of the finite element Stokes projection. J. Math. Pure Appl. 84, 279–330 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Girault, V., Raviart, P.A.: Finite Element Method for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag, Berlin (1987)

    MATH  Google Scholar 

  24. Guzman, J., Leykekhman, D.: Pointwise error estimates of finite element approximations to the Stokes problem on convex polyhedra. Math Comp. 81, 1879–1902 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Hansbo, P.: The characteristic streamline diffusion method for the time-dependent incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 99, 171–186 (1992)

    MathSciNet  MATH  Google Scholar 

  26. He, Y.N.: Optimal error estimate of the penalty finite element method for the time-dependent Navier-Stokes equations. Math. Comput. 74, 1201–1216 (2005)

    MathSciNet  MATH  Google Scholar 

  27. He, Y.N., Sun, W.W.: Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal. 45(2), 837–869 (2007)

    MathSciNet  MATH  Google Scholar 

  28. He, Y.N., Wang, A.W.: A simplified two-level method for the steady Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 197, 1568–1576 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Kim, D., Choi, Y.: Analysis of conduction-natural convection conjugate heat transfer in the gap between concentric cylinders under solar irradiation. Int. J. Thermal Sci. 48, 1247–1258 (2009)

    Google Scholar 

  31. Luo, Z., Chen, J., Navon, I.M., Zhu, J.: An optimizing reduced PLSMFE formulation for non-stationary conduction-convection problems. Int. J. Numer. Meth. Fluids 60, 409–436 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Modeling 10, 622–633 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Nochetto, R., Pyo, J.H.: The finite element Gauge-Uzawa method. Part II: the Boussinesq equations. Mathematical Models and Methods in Applied Sciences 16(10), 1599–1626 (2006)

    MathSciNet  MATH  Google Scholar 

  34. Pironnequ, O.: On the transport-diffusion algorithm and it’s applications to the Navier-Stokes equations. Numer. Math. 38, 309–332 (1982)

    MathSciNet  Google Scholar 

  35. Russell, T.F.: Time stepping along characteristics with incomplete iteration for a Galerkin approximation of miscible displacement in porous media. SIAM J. Numer. Anal. 22(5), 970–1013 (1985)

    MathSciNet  MATH  Google Scholar 

  36. Sesterhenn, J.: A characteristic-type formulation of the Navier-Stokes equations for high order upwind schemes. Comput. Fluids 30, 37–67 (2001)

    MATH  Google Scholar 

  37. Si, Z.Y.: Second order modified method of characteristics mixed defect-correction finite element method for time dependent Navier-Stokes problems. Numer. Algor. 59(2), 271–300 (2012)

    MathSciNet  MATH  Google Scholar 

  38. Si, Z.Y., He, Y.N.: A coupled Newton iterative mixed finite element method for stationary conduction-convection problems. Computing 89(1–2), 1–25 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Si, Z.Y., He, Y.N.: A defect-correction mixed finite element method for stationary conduction-convection problems, Math. Prob. Engine., 2011, Article ID 370192, 28 pages,. https://doi.org/10.1155/2011/370192

    MathSciNet  MATH  Google Scholar 

  40. Si, Z.Y., He, Y.N., Wang, K.: A defect-correction method for unsteady conduction convection problems I: spatial discretization. Sci. China. Math. 54, 185–204 (2011)

    MathSciNet  MATH  Google Scholar 

  41. Si, Z.Y., He, Y.N., Zhang, T.: A defect-correction method for unsteady conduction-convection problems II: time discretization. J. Comput. Appl. Math. 236 (9), 2553–2573 (2012)

    MathSciNet  MATH  Google Scholar 

  42. Si, Z.Y., Shang, Y.Q., Zhang, T.: New one- and two-level Newton iterative mixed finite element methods for stationary conduction-convection problem. Finite Elem. Anal Des. 47, 175–183 (2011)

    MathSciNet  Google Scholar 

  43. Si, Z.Y., Wang, J.L., Sun, W.W.: Unconditional stability and error estimates of modified characteristics FEMs for the Navier-Stokes equations, Numer. Math. https://doi.org/10.1007/s00211-015-0767-9 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Si, Z.Y., Zhang, T., Wang, K.: A Newton iterative scheme mixed finite element method for stationary conduction-convection problems. Int. J. Comput. Fluid Dyn. 24, 135–141 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Süli, E.: Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations. Numer. Math. 53, 459–483 (1998)

    MathSciNet  MATH  Google Scholar 

  46. Sun, W.W., Sun, Z.Z.: Finite difference methods for a nonlinear and strongly coupled heat and moisture transport system in textile materials. Numer. Math. 120, 153–187 (2012)

    MathSciNet  MATH  Google Scholar 

  47. Wang, J., Si, Z., Sun, W.: A new error analysis of characteristics-mixed FEMs for miscible displacement in porous media. SIAM J. Numer. Anal. 52, 3000–3020 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Wang, H.: An optimal-order error estimate for a family of ELLAM-MFEM approximations to porous medium flow. SIAM J. Numer. Anal. 46, 2133–2152 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their valuable suggestions and comments, which helped to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Si.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the China Postdoctoral Science Foundation (No. 2018M630907) and Key scientific research projects of Henan colleges and Universities (No. 19B110007).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, Z., Lei, Y. & Tong, Z. Unconditional optimal error estimate of the projection/Lagrange-Galerkin finite element method for the Boussinesq equations. Numer Algor 83, 669–700 (2020). https://doi.org/10.1007/s11075-019-00698-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00698-7

Keywords

Navigation