[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Stability analysis of a family of optimal fourth-order methods for multiple roots

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Complex dynamics tools applied on the rational functions resulting from a parametric family of roots solvers for nonlinear equations provide very useful results that have been stated in the last years. These qualitative properties allow the user to select the most efficient members from the family of iterative schemes, in terms of stability and wideness of the sets of convergent initial guesses. These tools have been widely used in the case of iterative procedures for finding simple roots and only recently are being applied on the case of multiplicity m > 1. In this paper, by using weight function procedure, we design a general class of iterative methods for calculating multiple roots that includes some known methods. In this class, conditions on the weight function are not very restrictive, so a large number of different subfamilies can be generated, all of them are optimal with fourth-order of convergence. Their dynamical analysis gives us enough information to select those with better properties and test them on different numerical experiments, showing their numerical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Constantinides, A., Mostoufi, N.: Numerical Methods for Chemical Engineers with MATLAB Applications. Prentice Hall PTR, New Jersey (1999)

    Google Scholar 

  2. Shacham, M.: Numerical solution of constrained nonlinear algebraic equations. Int. Numer. Method Eng. 23, 1455–1481 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hueso, J.L., Martínez, E., Teruel, C.: Determination of multiple roots of nonlinear equations and applications. Math. Chem. 53, 880–892 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anza, S., Vicente, C., Gimeno, B., Boria, V.E., Armendá riz, J.: Long-term multipactor discharge in multicarrier systems. Phys Plasmas 14(8), 082–112 (2007)

    Article  Google Scholar 

  5. Neta, B., Johnson, A.N.: High order nonlinear solver for multiple roots. Comp. Math. Appl. 55(9), 2012–2017 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, S., Liao, X., Cheng, L.: A new fourth-order iterative method for finding multiple roots of nonlinear equations. Appl. Math. Comput. 215, 1288–1292 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Neta, B.: Extension of Murakami’s high-order non-linear solver to multiple roots. Int. J. Comput. Math. 87(5), 1023–1031 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sharma, J.R., Sharma, R.: Modified Jarratt method for computing multiple roots. Appl. Math. Comput. 217, 878–881 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Li, S.G., Cheng, L.Z., Neta, B.: Some fourth-order nonlinear solvers with closed formulae for multiple roots. Comput. Math. Appl. 59, 126–135 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhou, X., Chen, X., Song, Y.: Constructing higher-order methods for obtaining the muliplte roots of nonlinear equations. Comput. Math. Appl. 235, 4199–4206 (2011)

    Article  MATH  Google Scholar 

  11. Sharifi, M., Babajee, D.K.R., Soleymani, F.: Finding the solution of nonlinear equations by a class of optimal methods. Comput. Math. Appl. 63, 764–774 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Soleymani, F., Babajee, D.K.R., Lofti, T.: On a numerical technique for finding multiple zeros and its dynamic. Egypt. Math. Soc. 21, 346–353 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Soleymani, F., Babajee, D.K.R.: Computing multiple zeros using a class of quartically convergent methods. Alex. Eng. J. 52, 531–541 (2013)

    Article  Google Scholar 

  14. Liu, B., Zhou, X.: A new family of fourth-order methods for multiple roots of nonlinear equations. Non. Anal. Model. Cont. 18(2), 143–152 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Zhou, X., Chen, X., Song, Y.: Families of third and fourth order methods for multiple roots of nonlinear equations. Appl. Math. Comput. 219, 6030–6038 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Thukral, R.: A new family of fourth-order iterative methods for solving nonlinear equations with multiple roots. Numer. Math. Stoch. 6(1), 37–44 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R.: On developing fourth-order optimal families of methods for multiple roots and their dynamics. Appl. Math. Comput. 265(15), 520–532 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R., Kanwar, V.: An optimal fourth-order family of methods for multiple roots and its dynamics. Numer. Algor. 71(4), 775–796 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lee, M.Y., Kim, Y.I., Magreñán, Á.A.: On the dynamics of tri-parametric family of optimal fourth-order multiple-zero finders with a weight function of the principal mth root of a function-function ratio. Appl. Math. Comput. 315, 564–590 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Kim, Y.I., Geum, Y.-H.: A triparametric family of optimal fourth-order multiple-root finders and their Dynamics, Discrete Dynamics in Nature and Society 2016. Article ID 8436759 23 pp. (2016)

  21. Kim, Y.I., Geum, Y.-H.: A two-parametric family of fourth-order iterative methods with optimal convergence for multiple zeros, J. Appl. Math. 2013. Article ID 369067 7 pp. (2013)

  22. Kim, Y.I., Geum, Y.-H.: A new biparametric family of two-point optimal fourth-order multiple-root finders, J. Appl. Math. 2014. Article ID 737305 7 pp. (2014)

  23. Amat, S., Argyros, I.K., Busquier, S., Magreñán, Á.A.: Local convergence and the dynamics of a two-point four parameter Jarratt-like method under weak conditions. Numer. Algor. https://doi.org/10.1007/s11075-016-0152-5 (2017)

  24. Cordero, A., García-maimó, J., Torregrosa, J.R., Vassileva, M.P., Vindel, P.: Chaos in King’s iterative family. Appl. Math. Lett. 26, 842–848 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Geum, Y.H., Kim, Y.I., Neta, B.: A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points. Appl. Math. Comput. 283, 120–140 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Amiri, A., Cordero, A., Darvishi, M.T., Torregrosa, J.R.: Stability analysis of a parametric family of seventh-order iterative methods for solving nonlinear systems. Appl. Math. Comput. 323, 43–57 (2018)

    MathSciNet  Google Scholar 

  27. Blanchard, P.: The dinamics of Newton’s method. Proc. Symp. Appl. math. 49, 139–154 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Beardon, A.F.: Iteration of rational functions: Complex and Analytic Dynamical Systems, Graduate Texts in Mathematics, vol. 132. Springer-Verlag, New York (1991)

    Book  Google Scholar 

  29. Devaney, R.L.: An introduction to chaotic dynamical systems. Addison-Wesley Publishing Company, Boston (1989)

    MATH  Google Scholar 

  30. Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. AMS 11(1), 85–141 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameter planes of iterative families and methods, Sci. World 2013. Article ID 780153, 11 pp. (2013)

  32. Jay, L.O.: A note on Q-order of convergence. BIT Numer. Math. 41, 422–429 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their help to improve the final version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan R. Torregrosa.

Ethics declarations

Conflict of interests

The authors declare that there are no conflicts of interest.

Additional information

This research was partially supported by Ministerio de Economía y Competitividad MTM2014-52016-C2-2-P, Generalitat Valenciana PROMETEO/2016/089 and Schlumberger Foundation-Faculty for Future Program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafar, F., Cordero, A. & Torregrosa, J.R. Stability analysis of a family of optimal fourth-order methods for multiple roots. Numer Algor 81, 947–981 (2019). https://doi.org/10.1007/s11075-018-0577-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0577-0

Keywords