[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Modified Kantorovich operators with better approximation properties

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In the present paper, we study a new kind of Bernstein-Kantorovich-type operators. Here, we discuss a uniform convergence estimate for this modified form. Also, some direct estimates, which involve the asymptotic-type results, are established. Some numerical examples which show the relevance of the results are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acu, A.M., Rasa, I.: New estimates for the differences of positive linear operators. Numer. Algo. 73(3), 775–789 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arab, H.K., Dehghan, M., Eslahchi, M.R.: A new approach to improve the order of approximation of the Bernstein operators: theory and applications. Numer. Algo. 77(1), 111–150 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernstein, S.N.: Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités. Communications de la Société Mathematique de Kharkov 13, 1–2 (1913)

    Google Scholar 

  4. Dhamija, M., Deo, N.: Better approximation results by Bernstein-Kantorovich operators. Lobachevskii J Math. 38(1), 94–100 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  6. Gavrea, I., Ivan, M.: An answer to a conjecture on Bernstein operators. J. Math. Anal. Appl. 390(1), 86–92 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gonska, H., Rasa, I.: Asymptotic behavior of differentiated Bernstein polynomials. Mat. Vesnik 61(1), 53–60 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Gonska, H.: On the degree of approximation in Voronovskaja’s theorem. Studia Univ. Babeş, Bolyai Math. 52(3), 103–115 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Gonska, H.: Quantitative Aussagen zur Approximation durch positive lineare Operatoren, Ph. D. thesis, Duisburg Universit at Duisburg (1979)

  10. Gupta, V., Tachev, G.: Approximation with positive linear operators and linear combinations. Springer, Berlin (2017)

    Book  MATH  Google Scholar 

  11. Gupta, V., Agarwal, R.P.: Convergence estimates in approximation theory. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  12. Kantorovich, L.V.: Sur certain développements suivant les polynômes de la forme de S. Bernstein, I, II. C.R. Acad. URSS 563–568, 595–600 (1930)

    Google Scholar 

  13. Özarslan, M.A., Duman, O.: Smoothness properties of modified Bernstein-Kantorovich operators. Numer. Funct. Anal. Optim. 37(1), 92–105 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Popoviciu, T.: Sur l’approximation des fonctions covexes d’ordre supérieur. Mathematica (Cluj) 10, 49–54 (1934)

    MATH  Google Scholar 

  15. Popoviciu, T.: Sur l’approximation des fonctions continues d’une variable réelle par des polynomes. Ann. Sci. Univ. Iasi, Sect. I, Math 28, 208 (1942)

    MATH  Google Scholar 

  16. Tachev, G.: The complete asymptotic expansion for Bernstein operators. J. Math. Anal. Appl. 385(2), 1179–1183 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Voronovskaja, E.: Determination de la forme asymptotique d’approximation des fonctions par les polynomes de M. bernstein. Dokl. Akad. Nauk SSSR 4, 86–92 (1932)

    MATH  Google Scholar 

  18. Weierstrass, K.G.: Über Die Analytische Darstellbarkeit Sogenannter Willkürlicher Funktionen Einer Reellen Veränderlichen, Sitzungsber. Akad. Berlin, 1885, 633-639, 789-805. [Also In: Mathematische Werke, vol. 3, 1-37, Berlin: Mayer & Müller 1903]

Download references

Funding

The work of the third author was financed by the Lucian Blaga University of Sibiu research grant LBUS-IRG-2017-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana-Maria Acu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, V., Tachev, G. & Acu, AM. Modified Kantorovich operators with better approximation properties. Numer Algor 81, 125–149 (2019). https://doi.org/10.1007/s11075-018-0538-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0538-7

Keywords

Mathematics Subject Classification (2010)