Abstract
In the present paper, we study a new kind of Bernstein-Kantorovich-type operators. Here, we discuss a uniform convergence estimate for this modified form. Also, some direct estimates, which involve the asymptotic-type results, are established. Some numerical examples which show the relevance of the results are considered.
Similar content being viewed by others
References
Acu, A.M., Rasa, I.: New estimates for the differences of positive linear operators. Numer. Algo. 73(3), 775–789 (2016)
Arab, H.K., Dehghan, M., Eslahchi, M.R.: A new approach to improve the order of approximation of the Bernstein operators: theory and applications. Numer. Algo. 77(1), 111–150 (2018)
Bernstein, S.N.: Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités. Communications de la Société Mathematique de Kharkov 13, 1–2 (1913)
Dhamija, M., Deo, N.: Better approximation results by Bernstein-Kantorovich operators. Lobachevskii J Math. 38(1), 94–100 (2017)
DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Berlin (1993)
Gavrea, I., Ivan, M.: An answer to a conjecture on Bernstein operators. J. Math. Anal. Appl. 390(1), 86–92 (2012)
Gonska, H., Rasa, I.: Asymptotic behavior of differentiated Bernstein polynomials. Mat. Vesnik 61(1), 53–60 (2009)
Gonska, H.: On the degree of approximation in Voronovskaja’s theorem. Studia Univ. Babeş, Bolyai Math. 52(3), 103–115 (2007)
Gonska, H.: Quantitative Aussagen zur Approximation durch positive lineare Operatoren, Ph. D. thesis, Duisburg Universit at Duisburg (1979)
Gupta, V., Tachev, G.: Approximation with positive linear operators and linear combinations. Springer, Berlin (2017)
Gupta, V., Agarwal, R.P.: Convergence estimates in approximation theory. Springer, Berlin (2014)
Kantorovich, L.V.: Sur certain développements suivant les polynômes de la forme de S. Bernstein, I, II. C.R. Acad. URSS 563–568, 595–600 (1930)
Özarslan, M.A., Duman, O.: Smoothness properties of modified Bernstein-Kantorovich operators. Numer. Funct. Anal. Optim. 37(1), 92–105 (2016)
Popoviciu, T.: Sur l’approximation des fonctions covexes d’ordre supérieur. Mathematica (Cluj) 10, 49–54 (1934)
Popoviciu, T.: Sur l’approximation des fonctions continues d’une variable réelle par des polynomes. Ann. Sci. Univ. Iasi, Sect. I, Math 28, 208 (1942)
Tachev, G.: The complete asymptotic expansion for Bernstein operators. J. Math. Anal. Appl. 385(2), 1179–1183 (2012)
Voronovskaja, E.: Determination de la forme asymptotique d’approximation des fonctions par les polynomes de M. bernstein. Dokl. Akad. Nauk SSSR 4, 86–92 (1932)
Weierstrass, K.G.: Über Die Analytische Darstellbarkeit Sogenannter Willkürlicher Funktionen Einer Reellen Veränderlichen, Sitzungsber. Akad. Berlin, 1885, 633-639, 789-805. [Also In: Mathematische Werke, vol. 3, 1-37, Berlin: Mayer & Müller 1903]
Funding
The work of the third author was financed by the Lucian Blaga University of Sibiu research grant LBUS-IRG-2017-03.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gupta, V., Tachev, G. & Acu, AM. Modified Kantorovich operators with better approximation properties. Numer Algor 81, 125–149 (2019). https://doi.org/10.1007/s11075-018-0538-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-018-0538-7