[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Selective projection methods for solving a class of variational inequalities

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Very recently, Gibali et al. (Optimization 66, 417–437 2017) proposed a method, called selective projection method (SPM) in this paper, for solving the variational inequality problem (VIP) defined on \(C:=\bigcap _{i = 1}^{m} C^{i}\neq \emptyset \), where m ≥ 1 is an integer and \(\{C^{i}\}_{i = 1}^{m}\) is a finite level set family of convex functions on a real Hilbert space H. For the current iterate xn, SPM updates xn+ 1 by projecting onto a half-space \(C^{i_{n}}_{n} (\supset C^{i_{n}})\) constructed by using the input data, where in ∈{1,2,⋯ ,m} is selected by a special rule. The prominent advantage of SPM is that it is concise and easy to implement. Gibali et al. proved its convergence in the Euclidean space \(H=\mathbb {R}^{d}\). In this paper, we firstly prove the strong convergence of SPM in a general Hilbert space. The proof given in this paper is very different from that given by Gibali et al. We also extend SPM to solve VIP defined on the common fixed point set of finite nonexpansive self-mappings of H. Then, we estimate the convergence rate of SPM and its extension in the nonasymptotic sense. Finally, we give some preliminary numerical experiments which illustrate the advantage of SPM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aoyama, K., Kohsaka, F.: Viscosity approximation process for a sequence of quasinonexpansive mappings. Fixed Point Theory Appl. 2014, 17 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baiocchi, C., Capelo, A.: Variational and Quasi Variational Inequalities. Wiley, New York (1984)

    MATH  Google Scholar 

  3. Bnouhachem, A.: A self-adaptive method for solving general mixed variational inequalities. J. Math. Anal. Appl. 309, 136–150 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Byrne, C.L.: Iterative Optimization in Inverse Problems. CRC Press, Boca Raton (2014)

    Book  MATH  Google Scholar 

  5. Cai, X.J., Gu, G.Y., He, B.S.: On the \(O(\frac {1}{t})\) convergence rate of the projection and contraction methods for varitional inequalities with Lipschitz continuous monotone operators. Comput. Optim. Appl. 57, 339–363 (2014)

    Article  MathSciNet  Google Scholar 

  6. Cegielski, A.: Application of quasi-nonexpansive operators to an iterative method for variational inequality. SIAM J. Optim. 25, 2165–2181 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Censor, Y., Gibali, A.: Projections onto super-half-spaces for monotone variational inequality problems in finite dimensional space. J. Nonlinear Convex Anal. 9, 461–475 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Cegielski, A., Gibali, A., Reich, S., Zalas, R.: An algorithm for solving the variational inequality problem over the fixed point set of a quasi-nonexpansive operator in Euclidean space. Numer. Funct. Anal. Optim. 34, 1067–1096 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cegielski, A., Al-Musallam, F.: Strong convergence of a hybrid steepest descent method for the split common fixed point problem. Optimization 65, 1463–1476 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cegielski, A., Zalas, R.: Methods for variational inequality problem over the intersection of fixed point sets of quasi-nonexpansive operators. Numer. Funct. Anal. Optim. 34, 255–283 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cegielski, A., Zalas, R.: Properties of a class of approximately shrinking operators and their applications. Fixed Point Theory 15, 399–426 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Ceng, L.C., Ansari, Q.H., Yao, J.C.: Mann type steepest-descent and modified hybrid steepest-descent methods for variational inequalities in Banach spaces. Numer. Funct. Anal. Optim. 29, 987–1033 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cottle, R.W., Giannessi, F., Lions, J.L.: Variational Inequalities and Complementarity Problems. Theory and Applications. Wiley, New York (1980)

    Google Scholar 

  14. Deutsch, F., Yamada, I.: Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings. Numer. Funct. Anal. Optim. 19(1–2), 33–56 (1998)

    MathSciNet  MATH  Google Scholar 

  15. Facchinei, F., Pang, J.S.: Finite-dimentional Variational Inequalities and Complementarity Problems, vols. I and II. Springer Series in Operations Research, Springer (2003)

  16. Fukushima, M.: A relaxed projection method for variational inequalities. Math. Program. 35, 58–70 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fukushima, M.: Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Program. 53, 99–110 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Giannessi, F., Maugeri, A., Pardalos, P.M.: Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models. Kluwer Academic Press, Holland (2001)

    MATH  Google Scholar 

  19. Gibali, A., Censor, Y., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gibali, A., Reich, S., Zalas, R.: Iterative methods for solving variational inequalities in Euclidean space. J. Fixed Point Theory Appl. 17, 775–811 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gibali, A., Reich, S., Zalas, R.: Outer approximation methods for solving variational inequalities in Hilbert space. Optimization 66, 417–437 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Glowinski, R., Lions, J.L., Tremoliers, R.: Numerical Analysis of Variational Inequalities. North-Holland (1981)

  23. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings. Dekker (1984)

  24. Harker, P.T., Pang, J.S.: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program. 48, 161–220 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. He, B.S.: A Class of Implicit Methods for Monotone Variational Inequalities. Reports of the Institute of Mathematics, vol. 95–1. Nanjing University, PR China (1995)

    Google Scholar 

  26. He, B.S., Liao, L.Z.: Improvement of some projection methods for monotone variational inequalities. J. Optim. Theory Appl. 112, 111–128 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. He, S.N., Wu, T.: A modified subgradient extragradient method for solving monotone and variational inequalities. J. Inequal. Appl. 2017, 89 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. He, B.S., Yang, Z.H., Yuan, X.M.: An approximate proximal-extradient type method for monotone variational inequalities. J. Math. Anal. Appl. 300, 362–374 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. He, S.N., Xu, H.K.: Variational inequalities governed by boundedly Lipschitzian and strongly monotone operators. Fixed Point Theory. 10, 245–258 (2009)

    MathSciNet  MATH  Google Scholar 

  30. He, S.N., Yang, C.P.: Solving the variational inequality problem defined on intersection of finite level sets. Abstr. Appl. Anal. Article ID 942315, 8 p (2013)

  31. Hirstoaga, S.A.: Iterative selection methods for common fixed point problems. J. Math. Anal. Appl. 324, 1020–1035 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  33. Lions, J.L., Stampacchia, G.: Variational inequalities. Comm. Pure Apl. Math. 20, 493–512 (1967)

    Article  MATH  Google Scholar 

  34. Moudafi, A.: Viscosity approximation methods for fixed point problems. J. Math. Anal. Appl. 241, 46–55 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Opial, Z.: Weak convergence of the sequence of successive approximations of nonexpansive mappings. Bull. Amer. Math. Soc. 73, 595–597 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  36. Stampacchia, G.: Formes bilineaires coercivites sur les ensembles convexes. C. R. Acad. Sci. 258, 4413–4416 (1964)

    MATH  Google Scholar 

  37. Takahashi, N., Yamada, I.: Parallel algorithms for variational inequalities over the Cartesian product of the intersections of the fixed point sets of nonexpansive mappings. J. Approx Theory. 153, 139–160 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Xu, H.K., Kim, T.H.: Convergence of hybrid steepest-descent methods for variational inequalities. J. Optim. Theory Appl. 119, 185–201 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xu, H.K.: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279–291 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang, C.P., He, S.N.: Convergence of explicit iterative algorithms for solving a class of variational inequalities. J. WSEAS Trans. 13, 830–839 (2014)

    Google Scholar 

  41. Yang, H.M., Bell, G.H.: Traffic restraint, road pricing and network equilibrium. Trans. Res. B. 31, 303–314 (1997)

    Article  Google Scholar 

  42. Yamada, I.: The hybrid steepest-descent method for variational inequality problems over the intersection of the fixed point sets of nonexpansive mappings. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, pp 473–504. Amsterdam, North-Holland (2001)

  43. Yamada, I., Ogura, N.: Hybrid steepest descent method for variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings. Numer. Funct. Anal. Optim. 25, 619–655 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zeng, L.C., Wong, N.C., Yao, J.C.: Convergence analysis of modified hybrid steepest-descent methods with variable parameters for variational inequalities. J. Optim. Theory Appl. 132, 51–69 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhou, H.Y., Wang, P.Y.: A simpler explicit iterative algorithm for a class of variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 161, 716–727 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the reviewers for their pertinent comments and good suggestions.

Funding

This work was supported by the Fundamental Research Funds for the Central Universities (3122017072).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Songnian He.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Tian, H. Selective projection methods for solving a class of variational inequalities. Numer Algor 80, 617–634 (2019). https://doi.org/10.1007/s11075-018-0499-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0499-x

Keywords

Mathematics Subject Classification (2010)