Abstract
We study geometric properties of Krylov projection methods for large and sparse linear Hamiltonian systems. We consider in particular energy-preservation. We discuss the connection to structure preserving model reduction. We illustrate the performance of the methods by applying them to Hamiltonian PDEs.
Similar content being viewed by others
References
Van der Schaft, A., Jeltsema, D.: Port-Hamiltonian systems theory: an introductory overview. Foundations and Trends in Systems and Control 1(2–3), 173 (2014)
Feng, K., Qin, M.Z.: .. In: Numerical Methods for Partial Differential Equations, pp. 1–37. Springer (1987)
McLachlan, R.: Symplectic integration of Hamiltonian wave equations. Numer. Math. 66(1), 465 (1993)
Marsden, J.E., Weinstein, A.: The Hamiltonian structure of the Maxwell-Vlasov equations. Physica D: Nonlinear Phenomena 4(3), 394 (1982)
Sun, Y., Tse, P.: Symplectic and multisymplectic methods for Maxwell’s equations. J. Comput. Phys. 230(5), 2076 (2010). https://doi.org/10.1016/j.jcp.2010.12.006
Taylor Michael, E.: Partial Differential Equations, I. Basic Theory, vol. 115. Springer, New York (2011)
Richtmyer, R.D., Morton, K.W.: Difference methods for initial-value problems. Interscience Publishers John Wiley & Sons, Inc., Academia Publishing House of the Czechoslovak Acad (1967)
LaBudde, R.A., Greenspan, D.: Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion. Numer. Math. 25(4), 323 (1975)
McLachlan, R.I., Quispel, G., Robidoux, N.: Geometric integration using discrete gradients. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 357(1754), 1021 (1999)
Brugnano, L., Iavernaro, F., Trigiante, D.: Hamiltonian boundary value methods (energy preserving discrete line integral methods). Journal of Numerical Analysis Industrial Applied Mathematics 5(1), 17 (2010)
Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D., Owren, B., O’neale, D., Quispel, G.: Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field” method. J. Comput. Phys. 231(20), 6770 (2012)
Ge, Z., Marsden, J.: Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators. Phys. Lett. A 133, 134 (1988)
Botchev, M.A., Verwer, J.G.: Numerical integration of damped Maxwell equations. SIAM J. Sci. Comput. 31(2), 1322 (2009)
Eirola, T., Koskela, A.: Krylov integrators for Hamiltonian systems. BIT Numer. Math. 1–20. https://doi.org/10.1007/s10543-018-0732-y (2018)
Lopez, L., Simoncini, V.: Preserving geometric properties of the exponential matrix by block Krylov subspace methods. BIT Numer. Math. 46(4), 813 (2006)
Archid, A., Bentbib, A.H.: Approximation of the matrix exponential operator by a structure-preserving block Arnoldi-type method. Appl. Numer. Math. 75, 37 (2014). https://doi.org/10.1016/j.apnum.2012.11.008
Benner, P., Mehrmann, V., Xu, H.: A numerically stable structure-preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils. Numer. Math. 78(3), 329 (1998)
Arnol’d, V.I., Dubrovin, B., Kirillov, A., Krichever, I.: Dynamical Systems IV: Symplectic Geometry and Its Applications, vol. 4. Springer Science & Business Media, Berlin (2001)
Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structurepreserving Algorithms for Ordinary Differential Equations, vol. 31. Springer Science & Business Media, Berlin (2006)
Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q. Appl. Math. 9(1), 17 (1951)
Benner, P., Faßbender, H., Stoll, M.: A Hamiltonian Krylov–Schur-type method based on the symplectic Lanczos process. Linear Algebra Appl. 435(3), 578 (2011)
Lall, S., Krysl, P., Marsden, J.E.: Structure-preserving model reduction for mechanical systems. Physica D: Nonlinear Phenomena 184(1), 304 (2003)
Celledoni, E., Li, L.: .. In: Proceedings of the ECMI Conference, pp. 663–559 (2016)
Benner, P., Faßbender, H.: An implicitly restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem. Linear Algebra Appl. 263, 75 (1997)
Watkins, D.S.: On Hamiltonian and symplectic Lanczos processes. Linear Algebra Appl. 385, 23 (2004)
Faßbender, H.: A detailed derivation of the parameterized SR algorithm and the symplectic Lanczos method for Hamiltonian matrices. Preprint (2006)
Agoujil, S., Bentbib, A., Kanber, A.: A structure preserving approximation method for hamiltonian exponential matrices. Appl. Numer. Math. 62(9), 1126 (2012)
Goldstein, H., Poole, C., Safko, J.: Classical Mechanics, 3rd edn. Addison Wesley (2001)
Benner, P., Mehrmann, V., Sorensen, D.C.: Dimension Reduction of Large-Scale Systems, vol. 35. Springer, Berlin (2005)
Ward, R.C.: Numerical computation of the matrix exponential with accuracy estimate. SIAM J. Num. Anal. 14, 600 (1977)
Acknowledgment
The second author would like to thank Dr. Long Pei for the helpful discussions and suggestions on previous versions of this paper. We are grateful to the anonymous referees for many useful comments.
Funding
This work was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie, grant agreement No. 691070.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
Rights and permissions
About this article
Cite this article
Li, L., Celledoni, E. Krylov projection methods for linear Hamiltonian systems. Numer Algor 81, 1361–1378 (2019). https://doi.org/10.1007/s11075-018-00649-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-018-00649-8