[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

An inertial subgradient-type method for solving single-valued variational inequalities and fixed point problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we introduce an inertial subgradient-type algorithm to find the common element of fixed point set of a family of nonexpansive mappings and the solution set of the single-valued variational inequality problem. Under the assumption that the mapping is monotone and Lipschitz continuous, we show that the sequence generated by our algorithm converges strongly to some common element of the fixed set and the solution set. Moreover, preliminary numerical experiments are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9(1), 3–11 (2001)

    Article  MathSciNet  Google Scholar 

  2. Attouch, H., Peypouquet, J., Redont, P.: A dynamical approach to an inertial forward-backward algorithm for convex minimization. SIAM J. Optim. 24, 232–256 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bot, R.I., Csetnek, E.R.: An inertial alternating direction method of multipliers. Minimax Theory Appl. 1, 29–49 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Bot, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas-Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 256, 472–487 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Bot, R.I., Csetnek, E.R., Laszlo, S.C.: An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions. EURO J. Comput. Optim. 4(1), 1–23 (2016)

    Article  MathSciNet  Google Scholar 

  6. Bruck, R.E. Jr: Properties of fixed-point sets of nonexpansive mappings in Banach spaces. Trans. Amer. Math. Soc. 179, 251–262 (1973)

    Article  MathSciNet  Google Scholar 

  7. Chen, C., Ma, S., Yang, J.: A general inertial proximal point algorithm for mixed variational inequality problem. SIAM J. Optim. 25(4), 2120–2142 (2014)

    Article  MathSciNet  Google Scholar 

  8. Bot, R.I., Csetnek, R.I.: A hybrid proximal-extragradient algorithm with inertial effects. Numer. Func. Anal. Optim. 36(8), 951–963 (2014)

    Article  MathSciNet  Google Scholar 

  9. Bot, R.I., Csetnek, R.I.: An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems. Numer. Algor. 71(3), 1–22 (2016)

    Article  MathSciNet  Google Scholar 

  10. Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 61 (9), 1119–1132 (2010)

    Article  MathSciNet  Google Scholar 

  11. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  Google Scholar 

  12. Dong, Q.L., Lu, Y.Y., Yang, J.: The extragradient algorithm with inertial effects for solving the variational inequality. Optimization 65(12), 2217–2226 (2016)

    Article  MathSciNet  Google Scholar 

  13. Facchinei, F., Pang, J.-S.: Finite-dimensional variational inequalities and complementarity problems, vol. 1, 2. Springer, New York (2003)

    MATH  Google Scholar 

  14. Fang, C.J., He, Y.R.: A double projection algorithm for multi-valued variational inequalities and a unified framework of the method. Appl. Math. Comput. 217, 9543–9511 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Fang, C.J., He, Y.R.: An extragradient method for generalized variational inequality. Pac. J. Optim. 9, 47–59 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Fang, C.J., Chen, S.L.: A subgradient extragradient algorithm for solving multi-valued variational inequality. Appl. Math. Comput. 229, 123–130 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Fang, C.J., Chen, S.L.: Some extragradient algorithms for variational inequalities. In: Han, W., Migorski, S., Sofonea, M. (eds.) Advances in Variational and Hemivariational Inequalities: Theory, Numerical Analysis, and Applications, vol. 33, pp 145–171. Springer, Cham (2015)

    Google Scholar 

  18. He, Y.R.: A new double projection algorithm for variational inequalities. J. Comput. Appl. Math. 185(1), 166–173 (2006)

    Article  MathSciNet  Google Scholar 

  19. Iusem, A.N., Svaiter, B.F.: A variant of Korpelevich’s method for variational inequalities with a new search strategy. Optimization 42(4), 309–321 (1997)

    Article  MathSciNet  Google Scholar 

  20. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekonom. i Mat. Metody 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  21. Marino, G., Xu, H.K.: Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces. J. Math. Anal. Appl. 329, 336–346 (2007)

    Article  MathSciNet  Google Scholar 

  22. Ochs, P., Chen, Y., Brox, T., Pock, T.: Ipiano: inertial proximal algorithm for non-convex optimization. SIAM J. Imaging Sci. 7(2), 1388–1419 (2014)

    Article  MathSciNet  Google Scholar 

  23. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. B. Amer. Math. Soc. 73(4), 591–597 (1967)

    Article  MathSciNet  Google Scholar 

  24. Polyak, B.T.: Introduction to optimization, optimizaiton. Optimization Software Inc. Publications Division, New York (1987)

    Google Scholar 

  25. Sibony, M.: Methodes iteratives pour les equations et enequalitions aux derivees partielles nonlineares de type monotone. Calcolo 7, 65–183 (1970)

    Article  MathSciNet  Google Scholar 

  26. Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37(3), 765–776 (1999)

    Article  MathSciNet  Google Scholar 

  27. Takahashi, W.: Nonlinear functional analysis. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  28. Wang, Y.J., Xiu, N.H., Zhang, J.Z.: Modified extragradient method for variational inequalities and verification of solution existence. J. Optim. Theory Appl. 119, 167–183 (2003)

    Article  MathSciNet  Google Scholar 

  29. Xia, F.Q., Huang, N.J.: A projection-proximal point algorithm for solving generalized variational inequalities. J. Optim. Theory Appl. 150, 98–117 (2011)

    Article  MathSciNet  Google Scholar 

  30. Ye, M.L., He, Y.R.: A double projection method for solving variational inequalities without mononicity. Comput. Optim. Appl. 60(1), 141–150 (2015)

    Article  MathSciNet  Google Scholar 

  31. Zarantonello, E.H.: Projections on convex sets in Hilbert space and spectral theory. In: Zarantonello, E.H. (ed.) Contributions to Nonlinear Functional Analysis. Academic Press, New York (1971)

Download references

Funding

This work is partially supported by the National Natural Science Foundation of China (No. 11771350), Basic and Advanced Research Project of CQ CSTC (No. cstc2016jcyjA0163), Science and Technology Project of Chongqing Municipal Education Committee of China (No. KJ1600433), and Chongqing Research and Innovation Project of Graduate Students (No. CYS16173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjie Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Fang, C. & Chen, S. An inertial subgradient-type method for solving single-valued variational inequalities and fixed point problems. Numer Algor 79, 941–956 (2018). https://doi.org/10.1007/s11075-017-0468-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0468-9

Keywords

Navigation