[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Finite-difference method for singular nonlinear systems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper presents a method for solving nonlinear system with singular Jacobian at the solution. The convergence rate in the case of singularity deteriorates and one way to accelerate convergence is to form bordered system. A local algorithm, with finite-difference approximations, for forming and solving such system is proposed in this paper. To overcome the need that initial approximation has to be very close to the solution, we also propose a method which is a combination of descent method with finite-differences and local algorithm. Some numerical results obtained on relevant examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buhmiler, S., Krejić, N., Luzanin, Z.: Practical quasi-Newton algorithms for singular nonlinear systems. Numerical Algorithms 55, 481–502 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chow, S.S., Washburn, A.: A shooting like method for non-Darcian seepage flow problems. Numerical Algorithms 74, 951–966 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Decker, D.W., Keller, H.B., Kelley, C.T.: Convergence rates for Newton’s method at singular points. SIAM J. Numer. Anal. 20(2), 269–314 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs (1983)

    MATH  Google Scholar 

  5. Griewank, A.: On solving nonlinear equations with simple singularities or nearly singular solutions. SIAM Rev. 27(4), 537–563 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Griewank, A., Reddien, G.W.: Characterization and computation of generalized turning points. SIAM J. Numer. Anal. 21(1), 176–185 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kelley, C.T.: A shamanskii like acceleration scheme for nonlinear equations at singular roots. Math. Comput. 47(176), 609–623 (1986)

    MathSciNet  MATH  Google Scholar 

  8. Li, X., Rui, H.: A two-grid block-centered finite difference method for the nonlinear time-fractional parabolic equation. J. Sci. Comput. 72, 863–891 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nie, P.Y.: A null space method for solving system of equations. App. Math. Comp. 149, 215–226 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rabier, P.J., Reddien, G.W.: Characterization and computation of singular points with maximum rank deficiency. SIAM J. Numer. Anal. 23(5), 1040–1051 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Reddien, G.W.: On Newton’s method for singular problems. SIAM J. Numer. Anal. 15(5), 993–996 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Schnabel, R.B., Frank, P.D.: Tensor methods for nonlinear equations. SIAM J. Numer. Anal. 21, 815–843 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shen, Y.Q., Ypma, T.J.: Newton’s method for singular nonlinear equations using approximate left and right nullspaces of the Jacobian. Appl. Numer. Math. 54, 256–265 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Soheili, A.R., Soleymani, F.: Iterative methods for nonlinear systems associated with finite difference approach in stochastic differential equations. Numerical Algorithms 71, 89102 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanja Rapajić.

Additional information

This work is partially supported by Ministry of Education, Science and Technological Development, Republic of Serbia, grants no. 174030, 174009, TR32035 and the Project 142-451-2489 of the Provincial Secretariat for Higher Education and Scientific Research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buhmiler, S., Rapajić, S., Medić, S. et al. Finite-difference method for singular nonlinear systems. Numer Algor 79, 65–86 (2018). https://doi.org/10.1007/s11075-017-0428-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0428-4

Keywords

Mathematics Subject Classification (2010)

Navigation