[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Dynamic study of Schröder’s families of first and second kind

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The Schröder iterative families of the first and second kind are of great importance in the theory and practice of iterative processes for solving nonlinear equations f(x) = 0. In both cases, the methods E r (first kind) and S r (second kind) converge locally to a zero α of f as O(|x k α|r). Although characteristics of these families have been studied in many papers, their dynamic and chaotic behavior has not been completely investigated. In this paper, we compare convergence properties of both iterative schemes using the two methodologies: (i) comparison by numerical examples and (ii) comparison using dynamic study of methods by basins of attraction that enable their graphic visualization. Apart from the visualization of iterative processes, basins of attraction reveal very useful features on iterations such as consumed CPU time and average number of iterations, both as functions of starting points. We demonstrate by several examples that the Schröder family of the second kind S r possesses better convergence characteristics than the Schröder family of the first kind E r .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amat, S., Busquier, S., Plaza, S.: Review of some iterative root-finding methods from a dynamical point of view. Scientia 10, 3–35 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Amat, S., Busquier, S., Plaza, S.: Dynamics of a family of third-order iterative methods that do not require using second derivatives. Appl. Math. Comput. 154, 735–746 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Amat, S., Busquier, S., Plaza, S.: Dynamics of the King and Jarratt iterations. Aequ. Math. 69, 212–223 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Argyros, I.K., Magreñán, Á.A.: On the convergence of an optimal fourth-order family of methods and its dynamics. Appl. Math. Comput. 252, 336–346 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Brudnyi, Yu.: Rational approximation and exotic Lipschitz spaces. In: DeVore, R. A., Scherer, Quantitative Approximations (eds.), pp. 25–30. Academic Press, New York (1980)

  6. Buff, X., Hendriksen, C.: On König’s root-finding algorithms. Nonlinearity 16, 989–1015 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chicharro, F., Cordero, A., Gutiérrez, J.M., Torregrosa, J.R.: Complex dynamics of derivative-free methods for nonlinear equations. Appl. Math. Comput. 219, 7023–7035 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Chun, C., Lee, M.Y., Neta, B., Džunić, J.: On optimal fourth-order iterative methods free from second derivative and their dynamics. Appl. Math. Comput. 218, 6427–6438 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Chun, C., Neta, B.: Basins of attraction for Zhou-Chen-Song fourth order family of methods for multiple roots. Math. Comput. Simul. 109, 74–91 (2015)

    Article  MathSciNet  Google Scholar 

  10. Chun, C., Neta, B.: Basins of attraction for several third order methods to find multiple roots of nonlinear equations. Appl. Math. Comput. 268, 129–137 (2015)

    MathSciNet  Google Scholar 

  11. Cordero, A., Lotfi, T., Mahdiani, K., Torregrosa, J.R.: A stable family with high order of convergence for solving nonlinear equations. Appl. Math. Comput. 254, 240–251 (2015)

    MathSciNet  Google Scholar 

  12. Cordero, A., Magreñán, Á.A., Quemada, C., Torregrosa, J.R.: Stability study of eighth-order iterative methods for solving nonlinear equations. J. Comput. Appl. Math. 291, 348–357 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cordero, A., Torregrosa, J.R., Vindel, P.: Dynamics of a family of Chebyshev-Halley type methods. Appl. Math. Comput. 219, 8568–8583 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Dubeau, F., Gnang, C.: On the Chebyshev-Halley family of iteration functions. Int. J. Pure Appl. Math. 85, 1051–1059 (2013)

    Google Scholar 

  15. DeVore, R.A., Yu, X.-M.: Multivariate rational approximation. Trans. AMS 293, 161–169 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Halley, E.: A new and general method for finding the roots of equations. Philos. Trans. R. Soc. Lond. 18, 136–148 (1694)

    Article  Google Scholar 

  17. Householder, A.S.: Principles of Numerical Analysis. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  18. Jay, L.O.: A note on Q-order of convergence. BIT 41, 422–429 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kalantari, B.: On extraneous fixed-points of the Basic family of iteration functions. BIT 43, 453–458 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kalantari, B.: Polynomial root-finding and polynomiography. World Scientific, New Jersey (2009)

    MATH  Google Scholar 

  21. Kiss, I.: Über eine Verallgemeinerung des newtonschen Näherungsverfahrens. Z. Angew. Math. Mech. 34, 68–69 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  22. König, J.: Über eine Eigenschaft der Potenzreihen. Math. Anal. 23, 447–449 (1884)

    Article  MATH  Google Scholar 

  23. Magreñán, Á.A., Cordero, A., Gutiérrez, J.M., Torregrossa, J.R.: Real quantitative behaviour of a fourth-order family of iterative methods by using the convergence plane. Math. Comput. Simul. 105, 49–61 (2014)

    Article  Google Scholar 

  24. Neta, B., Chun, C.: Basins of attraction for several optimal fourth order methods for multiple roots. Math. Comput. Simul. 103, 39–59 (2014)

    Article  MathSciNet  Google Scholar 

  25. Neta, B., Scott, M., Chun, C.: Basin of attractions for several methods to find simple roots of nonlinear equations. Appl. Math. Comput. 218, 10548–10556 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Petković, I., Neta, B.: On an application of symbolic computation and computer graphics to root-finders: The case of multiple roots of unknown multiplicity. J. Comput. Appl. Math. 308, 215–230 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Petković, M.S.: Point estimation of root finding methods. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  28. Petković, M.S., Herceg, D.: On rediscovered iteration methods for solving equations. J. Comput. Appl. Math. 107, 275–284 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Petrushev, P.P., Popov, V.A.: Rational approximations of real functions. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  30. Popov, V.: Uniform rational approximation of the class V r , and its applications. Acta Math. Acad. Sci. Hungar. 29, 119–129 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  31. Popov, V.: Quantitative approximations. In: DeVore, R. A., Scherer (eds.) , pp. 267–277. Academic Press, New York (1980)

  32. Sashdeva, S., Vishnoi, N.K.: Faster algorithms via approximation theory. Found. Trends Theor. Comput. Sci. 9, 125–210 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Schröder, E.: Über unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann. 2, 317–365 (1870)

    Article  MathSciNet  Google Scholar 

  34. Scott, M., Neta, B., Chun, C.: Basin attractors for various methods. Appl. Math. Comput. 218, 2584–2599 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Smale, S., et al.: Newton’s method estimates from data at one point. In: Ewing, R. E. (ed.) The merging of disciplines: new directions in pure, applied, and computational mathematics, pp. 185–196. Springer, New York (1986)

  36. Stewart, B.D.: Attractor basins of various root-finding methods, M.S. thesis, Naval Postgraduate School, Department of Applied Mathematics, Monterey (2001)

  37. Stewart, G.W.: On infinitely many algorithms for solving equations; English translation of Schröder’s original paper [33], College Park, MD: University of Maryland, Institute for Advanced Computer Studies, Department of Computer Science (1993)

  38. Traub, J.F.: Iterative methods for the solution of equations. Prentice-Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  39. Varona, J.L.: Graphic and numerical comparison between iterative methods. Math. Intelligencer 24, 37–46 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vrscay, E.R., Gilbert, W.J.: Extraneous fixed points, basin boundaries and chaotic dynamics for Schöder and König rational functions. Numer. Math. 52, 1–16 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Serbian Ministry of Education and Science. The authors would like to thank Professor Beny Neta and anonymous referees for their valuable and constructive comments which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miodrag S. Petković.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petković, M.S., Petković, L.D. Dynamic study of Schröder’s families of first and second kind. Numer Algor 78, 847–865 (2018). https://doi.org/10.1007/s11075-017-0403-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0403-0

Keywords

Mathematics Subject Classification (2010)

Navigation