[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An affine scaling interior trust-region method combining with line search filter technique for optimization subject to bounds on variables

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper proposes and analyzes an affine scaling trust-region method with line search filter technique for solving nonlinear optimization problems subject to bounds on variables. At the current iteration, the trial step is generated by the general trust-region subproblem which is defined by minimizing a quadratic function subject only to an affine scaling ellipsoidal constraint. Both trust-region strategy and line search filter technique will switch to trail backtracking step which is strictly feasible. Meanwhile, the proposed method does not depend on any external restoration procedure used in line search filter technique. A new backtracking relevance condition is given which is weaker than the switching condition to obtain the global convergence of the algorithm. The global convergence and fast local convergence rate of this algorithm are established under reasonable assumptions. Preliminary numerical results are reported indicating the practical viability and show the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrei, N.: An unconstrained optimization test functions collection. Adv. Model. Optim. 10(1), 147–161 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Bjorck, A.: A direct method for sparse least squares problems with lower and upper bounds. Numer. Math. 54, 19–32 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bongartz, I., Conn, A., Gould, N., Toint, P.: CUTE: constrained and unconstrained testing environment, Research Report, IBM T. Watson Research Center, Yorktown, USA (1995)

  4. Conn, A., Gould, N., Toint, P.: Global convergence of a class of trust region algorithms for optimization with simple bounds. SIAM J. Numer. Anal. 25, 433–460 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coleman, T., Hempel, C.: Computing a trust region step for a penalty function. SIAM J. Sci. Statist. Comput. 11, 180–201 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Conn, A., Gould, N., Toint, P.: Global convergence of a class of trust region algorithms for optimization with simple bounds. SIAM J. Numer. Anal. 25, 433–460 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coleman, T., Li, Y.: On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds. Math. Programming 67, 189–224 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coleman, T., Li, Y.: An interior trust-region approach for minimization subject to bounds. SIAM J. Optim. 6(3), 418–445 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fletcher, R., Jackson, M.: Minimization of a quadratic function of many variables subject only to lower and upper bounds. J. Inst. Math. Appl. 14, 159–174 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fletcher, R.: An algorithm for solving linearly constrained optimization problems. Math. Programming 2, 133–165 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Math. Programming 91, 239–269 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gould, N., Sainvitu, C., Toint, P.: A filter-trust-region method for unconstrained optimization. SIAM J. Optim. 16(2), 341–357 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hock, W., Schittkowski, K.: Test Examples for Nonlinear Programming Codes. Lecture Notes in Economics and Mathematics System, vol. 187. Springer (1981)

  14. Lalee, M., Nocedal, J., Plantenga, T.: On the implementation of an algorithm for large-scale equality constrained optimization. SIAM J. Optim. 8, 682–706 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nocedal, J., Yuan, Y.: Combining trust region and line search techniques. In: Yuan, Y. (ed.) Advances in Nonlinear Programming, pp. 153–175. Kluwer, Dordrecht (1998)

    Chapter  Google Scholar 

  16. Ortega, J., Rheinboldt, W.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  17. Pei, Y., Zhu, D.: A trust-region algorithm combining line search filter technique for nonlinear constrained optimization. Int. J. Comput. Math. 8, 1817–1839 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wächter, A., Biegler, L.: Line search filter methods for nonlinear programming: motivation and global convergence. SIAM J. Comput. 16, 1–31 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Wächter, A., Biegler, L.: Line search filter methods for nonlinear programming: local convergence. SIAM J. Optim. 6, 32–48 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yang, E., Tolle, J.: A class of methods for solving large convex quadratic programs subject to box constraints. Math. Programming 51, 223–228 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhu, D.: Nonmonotonic back-tracking trust region interior point algorithm for linear constrained optimization. J. Comput. Appl. Math. 155, 285–305 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhu, D.: An affine scaling trust-region algorithm with interior backtracking technique for solving bound-constrained nonlinear systems. J. Comput. Appl. Math. 184, 343–361 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the partial supports of the National Natural Science Foundation (11371253) of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Li or Detong Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Zhu, D. An affine scaling interior trust-region method combining with line search filter technique for optimization subject to bounds on variables. Numer Algor 77, 1159–1182 (2018). https://doi.org/10.1007/s11075-017-0357-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0357-2

Keywords

Mathematics Subject Classification (2010)

Navigation