[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Updating preconditioners for modified least squares problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we analyze how to update incomplete Cholesky preconditioners to solve least squares problems using iterative methods when the set of linear relations is updated with some new information, a new variable is added or, contrarily, some information or variable is removed from the set. Our proposed method computes a low-rank update of the preconditioner using a bordering method which is inexpensive compared with the cost of computing a new preconditioner. Moreover, the numerical experiments presented show that this strategy gives, in many cases, a better preconditioner than other choices, including the computation of a new preconditioner from scratch or reusing an existing one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, S.T., Pan, C.T., Plemmons, R.J.: Analysis of a recursive least squares hyperbolic rotation algorithm for signal processing. Linear Algebra Appl. 98, 3–40 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrew, R., Dingle, N.: Implementing QR factorization updating algorithms on GPUs. Parallel Comput. 40(7), 161–172 (2014). doi:10.1016/j.parco.2014.03.003. http://www.sciencedirect.com/science/article/pii/S0167819114000337. 7th Workshop on Parallel Matrix Algorithms and Applications

    Article  MathSciNet  Google Scholar 

  3. Benzi, M., T˚uma, M.: A robust incomplete factorization preconditioner for positive definite matrices. Numer. Linear Algebra Appl. 10(5-6), 385–400 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benzi, M., Szyld, D.B., Van Duin, A.: Orderings for incomplete factorization preconditioning of nonsymmetric problems. SIAM J. Sci. Comput. 20(5), 1652–1670 (1999)

  5. Björck, Å.: Numerical methods for Least Squares Problems. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  6. Bru, R., Marín, J., Mas, J., T˚uma, M.: Preconditioned iterative methods for solving linear least squares problems. SIAM J. Sci. Comput. 36(4), A2002–A2022 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cerdán, J., Marín, J., Mas, J.: Low-rank upyears of balanced incomplete factorization preconditioners. Numer. Algorithms. doi:10.1007/s11075-016-0151-6 (2016)

  8. Chambers, J.M.: Regression updating. J. Amer. Statist. Assoc. 66, 744–748 (1971)

    Article  Google Scholar 

  9. Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM trans. Math. Software 38(1), 1–25 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Davis, T.A., Hager, W.W.: Modifying a sparse Cholesky factorization. SIAM J. Matrix Anal. Appl. 20, 606–627 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Davis, T.A., Hager, W.W.: Multiple-rank modifications of a sparse Cholesky factorization. SIAM J. Matrix Anal. Appl. 22, 997–1013 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Davis, T.A., Hager, W.W.: Row modification of a sparse Cholesky factorization. SIAM J. Matrix Anal. Appl. 26, 621–639 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hammarling, S., Lucas, C.: Updating the QR factorization and the least squares problem. Tech. rep., The University of Manchester, http://www.manchester.ac.uk/mims/eprints (2008)

  14. Olsson, O., Ivarsson, T.: Using the QR factorization to swiftly upyear least squares problems. Thesis report, Centre for Mathematical Sciences. The Faculty of Engineering at Lund University LTH (2014)

  15. Pothen, A., Fan, C.J.: Computing the block triangular form of a sparse matrix. ACM Trans. Math. Software 16, 303–324 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Saad, Y.: ILUT: A dual threshold incomplete LU factorization. Numer. Linear Algebra Appl. 1(4), 387–402 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing Co., Boston (1996)

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the anonymous referees for their helpful comments that substantially contributed to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mas.

Additional information

Partially supported by Spanish Grants MTM2014-58159-P and MTM2015-68805-REDT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marín, J., Mas, J., Guerrero, D. et al. Updating preconditioners for modified least squares problems. Numer Algor 75, 491–508 (2017). https://doi.org/10.1007/s11075-017-0315-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0315-z

Keywords

Mathematics Subject Classification (2010)

Navigation