[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Optimal homotopy analysis of a chaotic HIV-1 model incorporating AIDS-related cancer cells

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The studies of nonlinear models in epidemiology have generated a deep interest in gaining insight into the mechanisms that underlie AIDS-related cancers, providing us with a better understanding of cancer immunity and viral oncogenesis. In this article, we analyze an HIV-1 model incorporating the relations between three dynamical variables: cancer cells, healthy CD4 + T lymphocytes, and infected CD4 + T lymphocytes. Recent theoretical investigations indicate that these cells interactions lead to different dynamical outcomes, for instance to periodic or chaotic behavior. Firstly, we analytically prove the boundedness of the trajectories in the system’s attractor. The complexity of the coupling between the dynamical variables is quantified using observability indices. Our calculations reveal that the highest observable variable is the population of cancer cells, thus indicating that these cells could be monitored in future experiments in order to obtain time series for attractor’s reconstruction. We identify different dynamical behaviors of the system varying two biologically meaningful parameters: r 1, representing the uncontrolled proliferation rate of cancer cells, and k 1, denoting the immune system’s killing rate of cancer cells. The maximum Lyapunov exponent is computed to identify the chaotic regimes. Considering very recent developments in the literature related to the homotopy analysis method (HAM), we calculate the explicit series solutions of the cancer model and focus our analysis on the dynamical variable with the highest observability index. An optimal homotopy analysis approach is used to improve the computational efficiency of HAM by means of appropriate values for the convergence control parameter, which greatly accelerate the convergence of the series solution. The approximated analytical solutions are used to compute density plots, which allow us to discuss additional dynamical features of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antamn, K., Chang, Y.: Kaposi’s sarcoma. England J. Med. 342(14), 1027–1038 (2000)

    Article  Google Scholar 

  2. Chang, Y., Cesarman, E., Pessin, M.S., Lee, F., Culpepper, J., Knowles, D.M., Moore, P.S.: Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266, 1865–1869 (1994)

    Article  Google Scholar 

  3. Cranage, M.P.: Macaques infected with live attenuated SIVmac are protected against superinfection via the rectal mucosa. Virol. 229, 143–54 (1997)

    Article  Google Scholar 

  4. Klatzmann, D., Barr-Sinoussi, F.: Selective tropism of lymphadenopathy associated virus (LAV) for helper-inducer T lymphocytes. Science 225, 59–63 (1984)

    Article  Google Scholar 

  5. Klatzmann, D., Champagne, E., Chamaret, S., Gruest, J., Guetard, D., Hercend, T., Gluckman, J.C., Montagnier, L.: T-lymphocyte t4 molecule behaves as the receptor for human retrovirus LAV. Nature 312, 767–768 (1984)

    Article  Google Scholar 

  6. Gupta, P., Balachandran, R.: Cell-to-cell transmission of human immunodeficiency virus type 1 in the presence of azidothymidine and neutralizing antibody. J. Virol. 63, 2361–2365 (1989)

    Google Scholar 

  7. Diegel, M.L., Moran, P.A.: Regulation of HIV production by blood mononuclear cells from HIV-infected donors: II. HIV-1 production depends on T cell-monocyte interaction. AIDS Res. Hum. Retro, 9465–73 (1993)

  8. Schrier, R.D., McCutchan, J.A., Wiley, C.A.: Mechanisms of immune activation of human immunodeficiency virus in monocytes/macrophages. J. Virol. 67, 5713–5720 (1993)

    Google Scholar 

  9. Callaway, D.S., Perelson, A.S.: HIV-1 Infection and low steady state viral loads. Bull. Math. Biol. 64, 29–64 (2002)

    Article  MATH  Google Scholar 

  10. Kirschner, D.E., Lenhart, S., Serbin, S.: Optimal control of the chemotherapy of HIV. J. Math. Biol. 35, 775–792 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bogle, G., Dunbar, R.: Simulating T-cell motility in the lymph node paracortex with a packed lattice geometry. Immunol. Cell Biol. 86, 676–687 (2008)

    Article  Google Scholar 

  12. Sigal, A., Kim, J.T., Balazas, A.B., Dekel, E., Mayo, A., Milo, R., Baltimore, D.: Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature 477, 95–98 (2011)

    Article  Google Scholar 

  13. Lou, J., Ruggeri, T., Tebaldi, C.: Modeling cancer in HIV-1 infected individuals: equilibria, cycles and chaotic behavior. Math. Bios. Eng. 3, 313–324 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liao, S.J.: The Proposed Homotopy Analysis Techniques for the Solution of Nonlinear Problems. Ph.D. Dissertation, Shanghai, Shanghai Jiao Tong University (1992)

  15. Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. CRC Press, Chapman and Hall, Boca Raton (2003)

    Book  Google Scholar 

  16. Liao, S.J., Tan, Y.: A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 119, 297–355 (2007)

    Article  MathSciNet  Google Scholar 

  17. Abbasbandy, S.: Solution for the FitzHugh-Nagumo equation with the homotopy analysis method. Appl. Math. Modell. 32, 2706–2714 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bataineh, A.S., Noorani, M.S.M., Hashim, I.: Solving systems of ODEs by homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 13, 2060–2070 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mustafa, M., Khan, J.A., Hayat, T., Alsaedi, A.: Boundary layer flow of nanofluid over a nonlinearly stretching sheet with convective boundary condition. IEEE-Trans. Nanotechnol. 14, 159–168 (2015)

    Article  Google Scholar 

  20. Mustafa, M., Khan, J.A., Hayat, T., Alsaedi, A.: Analytical and numerical solutions for axisymmetric flow of nanofluid due to non-linearly stretching sheet. Int. J. Non-Linear Mech. doi:10.1016/j.ijnonlinmec.2015.01.005 (2015)

  21. Khan, H., Mohapatra, R.N., Vajravelu, K., Liao, S.J.: The explicit series solution of SIR and SIS epidemic models. Appl. Math. Comput. 215, 653–669 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Culshaw, R.V., Ruan, S.: A delay-differential equation model of HIV infection of CD4+ T cells. Math. Bios. 165, 27–39 (2000)

    Article  MATH  Google Scholar 

  23. Lou, J., Ma, Z.: The impact of the CD8+ cell non-cytotoxic antiviral response (CNAR) and cytotoxic T lymphocytes (CTL) activity in cell-to-cell spread model for HIV-1 with a time delay. J. Biol. Syst. 12(1), 73–90 (2004)

    Article  MATH  Google Scholar 

  24. Wodarz, D., Levy, D.N.: Effect of different modes of viral spread on the dynamics of multiply infected cells in human immunodeficiency virus infection. J. R. Soc. Interf. 8(55), 289–300 (2011)

    Article  Google Scholar 

  25. Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)

    Article  Google Scholar 

  26. Lefever, R., Erneux, T.: On the growth of cellular tissues under constant and fluctuating environmental conditions. Nonlin. Electrodyn. Biol. Syst., 287–305 (1984)

  27. Qi, A.S., Du, Y.: The Nonlinear Medeles for Immunity Shangai. Scientific and Technology Education Publishing House (1998)

  28. Venturino, E.: Simple metaecoepidemic models. Bull. Math. Biol. 73, 917–950 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Russell, J., Cohn, R.: Gronwall’ s Inequality. Bookvika publishing (2013)

  30. Letellier, C., Aguire, L.A.: Investigating nonlinear dynamics from time series: the influence of symmetries and the choice of observables. Chaos 12, 549–558 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Letellier, C., Aguire, L.A., Maquet, J.: Relation between observability and differential embeddings for nonlinear dynamics. Phys. Rev. E 71, 066213 (2005)

    Article  MathSciNet  Google Scholar 

  32. Letellier, C., Denis, F., Aguirre, L.A.: What can be learned from a chaotic cancer model. J. Theor. Biol. 322, 7–16 (2013)

    Article  MathSciNet  Google Scholar 

  33. Tkaczyk, E.R., Zhong, C.F., Ye, J.Y., Myc, A., Thomas, T., Cao, Z., Duran-Struuck, R., Luker, K.E., Luker, G.D., Norris, T.B., Baker, J. Jr.: In vivo monitoring of multiple circulating cell populations using two-photon flow cytometry. Opt. Commun. 281(4), 888–894 (2008)

    Article  Google Scholar 

  34. Hatziioannou, T., Evans, D.T.: Animal models for HIV/AIDS research. Nat. Rev. Microbiol. 10, 852–867 (2012)

    Article  Google Scholar 

  35. Parker, T., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. Springer-Verlag (1989)

  36. Alomari, A.K., Noorani, M.S.M., Nazar, R., Li, C.P.: Homotopy analysis method for solving fractional Lorenz system. Commun. Nonlinear Sci. Numer. Simul. 15, 1864–1872 (2010)

    Article  MATH  Google Scholar 

  37. Liao, S.J.: Advances in the homotopy analysis method. World Scientific Publishing Co (2014)

  38. Yabushita, K., Yamashita, M., Tsuboi, K.: An analytical solution of projectile motion with the quadratic resistance law using the homotopy analysis method. J. Phys. A: Math. Theor. 40, 8403–8416 (2007)

    Article  MATH  Google Scholar 

  39. Liao, S.J.: An optimal homotopy analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 15, 2003–2016 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ghoreishi, M., Ismail, A.I.B.M., Alomari, A.K.: Application of the homotopy analysis method for solving a model for HIV infection of CD4 +t-cells. Math. Comput. Modell. 54, 3007–3015 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lou, J., Ruggeri, T.: A time delay model about AIDS-related cancer: equilibria, cycles and chaotic behavior. Ricerche Mat. 56, 195–208 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Itik, M., Banks, S.P.: Chaos in a three-dimensional cancer model. Int. J. Bifurc. Chaos 20, 71–79 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Xu, P.: Differential phase space reconstructed for chaotic time series. Appl. Math. Modell. 33(2), 999–1013 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Roux, J.-C., Simoyi, R.H., Swinney, H.L.: Observation of a strange attractor. Phys. D 8, 257–266 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  45. Olsen, L.F., Schaffer, W.M.: Chaos versus noisy periodicity: alternative hypotheses for childhood epidemics. Science 249, 499–504 (1990)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by FCT/Portugal through UID/MAT/04459/2013. JS has been partially funded by the CERCA Programme of the Generalitat de Catalunya. The research leading to these results has received funding from “la Caixa” Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jorge Duarte or Josep Sardanyés.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte, J., Januário, C., Martins, N. et al. Optimal homotopy analysis of a chaotic HIV-1 model incorporating AIDS-related cancer cells. Numer Algor 77, 261–288 (2018). https://doi.org/10.1007/s11075-017-0314-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0314-0

Keywords

Mathematics Subject Classifications (2010)

Navigation