[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A trust-region approach with novel filter adaptive radius for system of nonlinear equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This work introduces a version of filter technique to produce an adaptive radius and then adds it into trust-region algorithm. This method uses advantages of the functions norm’s necessary information in order to produce a smaller radius of trust-region close to the optimizer and also a larger radius of trust-region far away from the optimizer using advantages of the filter technique (Fatemi and Mahdavi-Amiri, Comput. Optim. Appl. 52(1), 239–266 2012). Under some ordinary conditions, the global convergence of the proposed approach is proved. Numerical results are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahookhosh, M., Amini, K.: A nonmonotone trust region method with adaptive radius for unconstrained optimization. Comput. Math. Appl. 60, 411–422 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahookhosh, M., Amini, K., Kimiaei, M.: A globally convergeant trust-region method for large-scale symmetric nonlinear systems. Numer. Funct. Anal. Optim. 36, 830–855 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ahookhosh, M., Amini, K., Peyghami, M.R.: A nonmonotone trust-region line search method for large-scale unconstrained optimization. Appl. Math. Model. 36, 478–487 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ahookhosh, M., Esmaeili, H., Kimiaei, M.: An effective trust-region-based approach for symmetric nonlinear systems. Int. J. Comput. Math. 90(3), 671–690 (2013)

    Article  MATH  Google Scholar 

  5. Amini, K., Esmaeili, H., Kimiaei, M.: A nonmonotone trust-region-approach with nonmonotone adaptive radius for solving nonlinear systems. Iran. J. Numer. Anal. Optim. 6(1), 101–119 (2016)

    MATH  Google Scholar 

  6. Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Trust-Region Methods, Society for Industrial and Applied Mathematics SIAM. Philadelphia (2000)

  7. Deng, N.Y., Xiao, Y., Zhou, F.J.: Nonmonotonic trust region algorithm. J. Optim. Theory Appl. 26, 259–285 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Esmaeili, H., Kimiaei, M.: A new adaptive trust-region method for system of nonlinear equations. Appl. Math. Model. 38(11–12), 3003–3015 (2014)

    Article  MathSciNet  Google Scholar 

  10. Esmaeili, H., Kimiaei, M.: An efficient adaptive trust-region method for systems of nonlinear equations. Int. J. Comput. Math. 92, 151–166 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Esmaeili, H., Kimiaei, M.: A trust-region method with improved adaptive radius for systems of nonlinear equations. Math. Meth. Oper. Res. 83, 109–125 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fan, J.Y.: Convergence rate of the trust region method for nonlinear equations under local error bound condition. Comput. Optim. Appl. 34, 215–227 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fan, J.Y., Pan, J.Y.: A modified trust region algorithm for nonlinear equations with new updating rule of trust region radius. Int. J. Comput. Math. 87(14), 3186–3195 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fasano, G., Lampariello, F., Sciandrone, M.: A truncated nonmonotone Gauss-Newton method for large-scale nonlinear least-squares problems. Comput. Optim. Appl. 34(3), 343–358 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fatemi, M., Mahdavi-Amiri, N.: A filter trust-region algorithm for unconstrained optimization with strong global convergence properties. Comput. Optim. Appl. 52 (1), 239–266 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fletcher, R., Gould, N.I.M., Leyffer, S., Toint, P.L.: A. Wächter, Global convergence of a trust-region SQP-filter algorithm for general nonlinear programming. SIAM J. Optim. 13(3), 635–659 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Math. Program., Ser. A 91(2), 239–269 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gonzaga, C.C., Karas, E., Vanti, M.: A globally convergent filter method for nonlinear programming. SIAM J. Optim. 14(3), 646–669 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gould, N.I.M., Leyffer, S., Toint, P.L.: A multidimensional filter algorithm for nonlinear equations and nonlinear least-squares. SIAM J. Optim 15(1), 17–38 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gould, N.I.M., Sainvitu, C., Toint, P.L.: A filter-trust-region method for unconstrained optimization. SIAM J. Optim 16(2), 341–357 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23, 707–716 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grippo, L., Lampariello, F., Lucidi, S.: A truncated Newton method with nonmonotone linesearch for unconstrained optimization. J. Optim. Theory Appl. 60(3), 401–419 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grippo, L., Lampariello, F., Lucidi, S.: A class of nonmonotone stabilization method in unconstrained optimization. Numer. Math. 59, 779–805 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Grippo, L., Sciandrone, M.: Nonmonotone derivative-free methods for nonlinear equations. Comput. Optim. Appl. 37, 297–328 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kanzow, C., Petra, S.: Projected filter trust region methods for a semismooth least squares formulation of mixed complementarity problems. Optim. Methods Software 22, 713–735 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Cruz, W.L., Raydan, M.: Nonmonotone spectral methods for large-scale nonlinear systems. Optim. Methods Softw. 18(5), 583–599 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. La Cruz, W., Venezuela, C., Martínez, J.M., Raydan, M.: Spectral residual method without gradient information for solving large-scale nonlinear systems of equations: Theory and experiments, Technical Report RT–04–08 (2004)

  28. Li, D.H., Fukushima, M.: A globally and superlinearly convergent Gauss-Newton-Based BFGS method for symmetric nonlinear equations. SIAM J. Numer. Anal. 37(1), 152–172 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, S.J., Liu, Z.H.: A new trust region filter algorithm. Appl. Math. Comput. 204, 485–489 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Li, C.J., Sun, Y.: On filter-successive linearization methods for nonlinear semidefinite programming. Sci. Chin. (Series A) 52, 2341–2361 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lukšan, L., Vlček, J.: Sparse and partially separable test problems for unconstrained and equality constrained optimization, Techical Report, No. 767 (1999)

  32. Moré, J.J., Garbow, B.S., Hillström, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7, 17–41 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, NewYork (2006)

    MATH  Google Scholar 

  34. Ou, Y.G.: A filter trust region method for solving semi-infinite programming problems. J. Appl. Math. Comput. 29, 311–324 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Peng, Y.H., Liu, Z.H.: A derivative free filter algorithm for nonlinear complementarity problem. Appl. Math. Comput. 182, 846–853 (2006)

    MathSciNet  MATH  Google Scholar 

  36. Ribeiro, A.A., Karas, E.W., Gonzaga, C.C.: Global convergence of filter methods for nonlinear programming. SIAM J. Optim. 19(3), 1231–1249 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Santos, S.A.: Trust-region based methods for nonlinear programming: recent advances and perpectives. Pesquisa Operacional 34, 447–462 (2014)

    Article  Google Scholar 

  38. Sainvitu, C., Toint, Ph.L.: A filter-trust-region method for simplebound constrained optimization. Optim. Methods Softw. 22(5), 835–848 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Steihaug, T.: The conjugate gradient method and trust regions in large scale optimization. SIAM J. Numer. Anal. 20(3), 626–637 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  40. Toint, Ph.L.: Numerical solution of large sets of algebraic nonlinear equations. Math. Comput. 46(173), 175–189 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ulbrich, M., Ulbrich, S., Vicente, L.N.: A globally convergent primal-dual interior-point filter method for nonlinear programming. Math. Program. Ser. A 100(2), 379–410 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: motivation and global convergence. SIAM J. Optim. 16(1), 1–31 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yuan, G., Lu, S., Wei, Z.: A new trust-region method with line search for solving symmetric nonlinear equations. Int. J. Comput. Math. 88(10), 2109–2123 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yuan, G.L., Wei, Z.X., Lu, X.W.: A BFGS trust-region method for nonlinear equations. Computing 92(4), 317–333 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yuan, Ya-x.: Recent advances in trust region algorithms. Math. Program 151 (1), 249–281 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yuan, Y.: Trust region algorithm for nonlinear equations. Information 1, 7–21 (1981)

    Google Scholar 

  47. Zhang, J., Wang, Y.: A new trust region method for nonlinear equations. Math. Methods Oper. Res. 58, 283–298 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang, X.S, Zhang, J.L., Liao, L.Z.: An adaptive trust region method and its convergence. Sci. Chin. 45, 620–631 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Kimiaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimiaei, M., Esmaeili, H. A trust-region approach with novel filter adaptive radius for system of nonlinear equations. Numer Algor 73, 999–1016 (2016). https://doi.org/10.1007/s11075-016-0126-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0126-7

Keywords

Mathematics Subject Classification (2010)