Abstract
This work introduces a version of filter technique to produce an adaptive radius and then adds it into trust-region algorithm. This method uses advantages of the functions norm’s necessary information in order to produce a smaller radius of trust-region close to the optimizer and also a larger radius of trust-region far away from the optimizer using advantages of the filter technique (Fatemi and Mahdavi-Amiri, Comput. Optim. Appl. 52(1), 239–266 2012). Under some ordinary conditions, the global convergence of the proposed approach is proved. Numerical results are also presented.
Similar content being viewed by others
References
Ahookhosh, M., Amini, K.: A nonmonotone trust region method with adaptive radius for unconstrained optimization. Comput. Math. Appl. 60, 411–422 (2010)
Ahookhosh, M., Amini, K., Kimiaei, M.: A globally convergeant trust-region method for large-scale symmetric nonlinear systems. Numer. Funct. Anal. Optim. 36, 830–855 (2015)
Ahookhosh, M., Amini, K., Peyghami, M.R.: A nonmonotone trust-region line search method for large-scale unconstrained optimization. Appl. Math. Model. 36, 478–487 (2012)
Ahookhosh, M., Esmaeili, H., Kimiaei, M.: An effective trust-region-based approach for symmetric nonlinear systems. Int. J. Comput. Math. 90(3), 671–690 (2013)
Amini, K., Esmaeili, H., Kimiaei, M.: A nonmonotone trust-region-approach with nonmonotone adaptive radius for solving nonlinear systems. Iran. J. Numer. Anal. Optim. 6(1), 101–119 (2016)
Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Trust-Region Methods, Society for Industrial and Applied Mathematics SIAM. Philadelphia (2000)
Deng, N.Y., Xiao, Y., Zhou, F.J.: Nonmonotonic trust region algorithm. J. Optim. Theory Appl. 26, 259–285 (1993)
Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)
Esmaeili, H., Kimiaei, M.: A new adaptive trust-region method for system of nonlinear equations. Appl. Math. Model. 38(11–12), 3003–3015 (2014)
Esmaeili, H., Kimiaei, M.: An efficient adaptive trust-region method for systems of nonlinear equations. Int. J. Comput. Math. 92, 151–166 (2015)
Esmaeili, H., Kimiaei, M.: A trust-region method with improved adaptive radius for systems of nonlinear equations. Math. Meth. Oper. Res. 83, 109–125 (2016)
Fan, J.Y.: Convergence rate of the trust region method for nonlinear equations under local error bound condition. Comput. Optim. Appl. 34, 215–227 (2005)
Fan, J.Y., Pan, J.Y.: A modified trust region algorithm for nonlinear equations with new updating rule of trust region radius. Int. J. Comput. Math. 87(14), 3186–3195 (2010)
Fasano, G., Lampariello, F., Sciandrone, M.: A truncated nonmonotone Gauss-Newton method for large-scale nonlinear least-squares problems. Comput. Optim. Appl. 34(3), 343–358 (2006)
Fatemi, M., Mahdavi-Amiri, N.: A filter trust-region algorithm for unconstrained optimization with strong global convergence properties. Comput. Optim. Appl. 52 (1), 239–266 (2012)
Fletcher, R., Gould, N.I.M., Leyffer, S., Toint, P.L.: A. Wächter, Global convergence of a trust-region SQP-filter algorithm for general nonlinear programming. SIAM J. Optim. 13(3), 635–659 (2002)
Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Math. Program., Ser. A 91(2), 239–269 (2002)
Gonzaga, C.C., Karas, E., Vanti, M.: A globally convergent filter method for nonlinear programming. SIAM J. Optim. 14(3), 646–669 (2003)
Gould, N.I.M., Leyffer, S., Toint, P.L.: A multidimensional filter algorithm for nonlinear equations and nonlinear least-squares. SIAM J. Optim 15(1), 17–38 (2004)
Gould, N.I.M., Sainvitu, C., Toint, P.L.: A filter-trust-region method for unconstrained optimization. SIAM J. Optim 16(2), 341–357 (2005)
Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23, 707–716 (1986)
Grippo, L., Lampariello, F., Lucidi, S.: A truncated Newton method with nonmonotone linesearch for unconstrained optimization. J. Optim. Theory Appl. 60(3), 401–419 (1989)
Grippo, L., Lampariello, F., Lucidi, S.: A class of nonmonotone stabilization method in unconstrained optimization. Numer. Math. 59, 779–805 (1991)
Grippo, L., Sciandrone, M.: Nonmonotone derivative-free methods for nonlinear equations. Comput. Optim. Appl. 37, 297–328 (2007)
Kanzow, C., Petra, S.: Projected filter trust region methods for a semismooth least squares formulation of mixed complementarity problems. Optim. Methods Software 22, 713–735 (2007)
Cruz, W.L., Raydan, M.: Nonmonotone spectral methods for large-scale nonlinear systems. Optim. Methods Softw. 18(5), 583–599 (2003)
La Cruz, W., Venezuela, C., Martínez, J.M., Raydan, M.: Spectral residual method without gradient information for solving large-scale nonlinear systems of equations: Theory and experiments, Technical Report RT–04–08 (2004)
Li, D.H., Fukushima, M.: A globally and superlinearly convergent Gauss-Newton-Based BFGS method for symmetric nonlinear equations. SIAM J. Numer. Anal. 37(1), 152–172 (2000)
Li, S.J., Liu, Z.H.: A new trust region filter algorithm. Appl. Math. Comput. 204, 485–489 (2008)
Li, C.J., Sun, Y.: On filter-successive linearization methods for nonlinear semidefinite programming. Sci. Chin. (Series A) 52, 2341–2361 (2009)
Lukšan, L., Vlček, J.: Sparse and partially separable test problems for unconstrained and equality constrained optimization, Techical Report, No. 767 (1999)
Moré, J.J., Garbow, B.S., Hillström, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7, 17–41 (1981)
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, NewYork (2006)
Ou, Y.G.: A filter trust region method for solving semi-infinite programming problems. J. Appl. Math. Comput. 29, 311–324 (2009)
Peng, Y.H., Liu, Z.H.: A derivative free filter algorithm for nonlinear complementarity problem. Appl. Math. Comput. 182, 846–853 (2006)
Ribeiro, A.A., Karas, E.W., Gonzaga, C.C.: Global convergence of filter methods for nonlinear programming. SIAM J. Optim. 19(3), 1231–1249 (2008)
Santos, S.A.: Trust-region based methods for nonlinear programming: recent advances and perpectives. Pesquisa Operacional 34, 447–462 (2014)
Sainvitu, C., Toint, Ph.L.: A filter-trust-region method for simplebound constrained optimization. Optim. Methods Softw. 22(5), 835–848 (2007)
Steihaug, T.: The conjugate gradient method and trust regions in large scale optimization. SIAM J. Numer. Anal. 20(3), 626–637 (1983)
Toint, Ph.L.: Numerical solution of large sets of algebraic nonlinear equations. Math. Comput. 46(173), 175–189 (1986)
Ulbrich, M., Ulbrich, S., Vicente, L.N.: A globally convergent primal-dual interior-point filter method for nonlinear programming. Math. Program. Ser. A 100(2), 379–410 (2004)
Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: motivation and global convergence. SIAM J. Optim. 16(1), 1–31 (2005)
Yuan, G., Lu, S., Wei, Z.: A new trust-region method with line search for solving symmetric nonlinear equations. Int. J. Comput. Math. 88(10), 2109–2123 (2011)
Yuan, G.L., Wei, Z.X., Lu, X.W.: A BFGS trust-region method for nonlinear equations. Computing 92(4), 317–333 (2011)
Yuan, Ya-x.: Recent advances in trust region algorithms. Math. Program 151 (1), 249–281 (2015)
Yuan, Y.: Trust region algorithm for nonlinear equations. Information 1, 7–21 (1981)
Zhang, J., Wang, Y.: A new trust region method for nonlinear equations. Math. Methods Oper. Res. 58, 283–298 (2003)
Zhang, X.S, Zhang, J.L., Liao, L.Z.: An adaptive trust region method and its convergence. Sci. Chin. 45, 620–631 (2002)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kimiaei, M., Esmaeili, H. A trust-region approach with novel filter adaptive radius for system of nonlinear equations. Numer Algor 73, 999–1016 (2016). https://doi.org/10.1007/s11075-016-0126-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-016-0126-7