[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Improvements on the infinity norm bound for the inverse of Nekrasov matrices

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

New bounds for the infinity norm of the inverse of Nekrasov matrices, which involve a parameter, are given. And then we determine the optimal value of the parameter such that the new bounds are better than those in Cvetkovic et al. (Appl. Math. Comput. 219, 5020–5024, 2013). Numerical examples are given to illustrate the corresponding results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, Z.Z., Wang, D.R.: Generalized matrix multisplitting relaxation methods and their convergence. Numer. Math. J. Chin. Univ. 2, 87–100 (1993). (In chinese)

    MathSciNet  MATH  Google Scholar 

  2. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York (1979)

    MATH  Google Scholar 

  3. Cvetković, L.: H-matrix theory vs. Eigenvalue localization. Numer. Algor. 42, 229–245 (2006)

    Article  MATH  Google Scholar 

  4. Cvetković, L., Kostić, V., Doroslovački, K.: Max-norm bounds for the inverse of S-Nekrasov matrices. Appl. Math. Comput. 218, 9498–9503 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cvetković, L., Dai, P.F., Doroslovački, K., Li, Y.T.: Infinity norm bounds for the inverse of Nekrasov matrices. Appl. Math. Comput. 219, 5020–5024 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hu, J.G.: Estimates of \(||B^{-1}A||_{\infty }\) and their applications. Math. Numer. Sin. 4, 272–282 (1982)

    MATH  Google Scholar 

  7. Hu, J.G.: Scaling transformation and convergence of splittings of matrix. Math. Numer. Sin. 5, 72–78 (1983)

    MATH  Google Scholar 

  8. Li, W.: On Nekrasov matrices. Linear Algebra Appl. 281, 87–96 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Robert, F.: Blocs-H-matrices et convergence des methodes iteratives classiques par blocs. Linear Algebra Appl. 2, 223–265 (1969)

    Article  MATH  Google Scholar 

  10. Tuo, Q.: Numerical Methods for Judging Generalized Diagonally Dominant Matrices. Doctor thesis, Xiangtan University (2011). (In chinese)

  11. Varah, J.M.: A lower bound for the smallest singular value of a matrix. Linear Algebra Appl. 11, 3–5 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoqian Li.

Additional information

This work is supported by National Natural Science Foundations of China (11361074), Natural Science Foundations of Yunnan Province (2013FD002) and IRTSTYN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Pei, H., Gao, A. et al. Improvements on the infinity norm bound for the inverse of Nekrasov matrices. Numer Algor 71, 613–630 (2016). https://doi.org/10.1007/s11075-015-0012-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-0012-8

Keywords

Mathematics Subject Classification (2010)

Navigation