Abstract
New bounds for the infinity norm of the inverse of Nekrasov matrices, which involve a parameter, are given. And then we determine the optimal value of the parameter such that the new bounds are better than those in Cvetkovic et al. (Appl. Math. Comput. 219, 5020–5024, 2013). Numerical examples are given to illustrate the corresponding results.
Similar content being viewed by others
References
Bai, Z.Z., Wang, D.R.: Generalized matrix multisplitting relaxation methods and their convergence. Numer. Math. J. Chin. Univ. 2, 87–100 (1993). (In chinese)
Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York (1979)
Cvetković, L.: H-matrix theory vs. Eigenvalue localization. Numer. Algor. 42, 229–245 (2006)
Cvetković, L., Kostić, V., Doroslovački, K.: Max-norm bounds for the inverse of S-Nekrasov matrices. Appl. Math. Comput. 218, 9498–9503 (2012)
Cvetković, L., Dai, P.F., Doroslovački, K., Li, Y.T.: Infinity norm bounds for the inverse of Nekrasov matrices. Appl. Math. Comput. 219, 5020–5024 (2013)
Hu, J.G.: Estimates of \(||B^{-1}A||_{\infty }\) and their applications. Math. Numer. Sin. 4, 272–282 (1982)
Hu, J.G.: Scaling transformation and convergence of splittings of matrix. Math. Numer. Sin. 5, 72–78 (1983)
Li, W.: On Nekrasov matrices. Linear Algebra Appl. 281, 87–96 (1998)
Robert, F.: Blocs-H-matrices et convergence des methodes iteratives classiques par blocs. Linear Algebra Appl. 2, 223–265 (1969)
Tuo, Q.: Numerical Methods for Judging Generalized Diagonally Dominant Matrices. Doctor thesis, Xiangtan University (2011). (In chinese)
Varah, J.M.: A lower bound for the smallest singular value of a matrix. Linear Algebra Appl. 11, 3–5 (1975)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is supported by National Natural Science Foundations of China (11361074), Natural Science Foundations of Yunnan Province (2013FD002) and IRTSTYN.
Rights and permissions
About this article
Cite this article
Li, C., Pei, H., Gao, A. et al. Improvements on the infinity norm bound for the inverse of Nekrasov matrices. Numer Algor 71, 613–630 (2016). https://doi.org/10.1007/s11075-015-0012-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-015-0012-8