Abstract
We investigate the use of orthonormal polynomials over the unit disk 𝔹2 in ℝ2 and the unit ball 𝔹3 in ℝ3. An efficient evaluation of an orthonormal polynomial basis is given, and it is used in evaluating general polynomials over 𝔹2 and 𝔹3. The least squares approximation of a function f on the unit disk by polynomials of a given degree is investigated, including how to write a polynomial using the orthonormal basis. Matlab codes are given.
Similar content being viewed by others
References
Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover, New York (1965)
Atkinson, K., Chien, D., Hansen, O.: A spectral method for elliptic equations: the Dirichlet problem. Adv. Comput. Math. 33, 169–189 (2010)
Atkinson, K., Han, W.: Spherical Harmonics and Approximations on the Unit Sphere : An Introduction, Lecture Notes in Mathematics, vol. 2044. Springer-Verlag, New York (2012)
Atkinson, K., Hansen, O.: A spectral method for the eigenvalue problem for elliptic equations. Electron. Trans. Numer. Anal. 37, 386–412 (2010)
Atkinson, K., Hansen, O.: Creating domain mappings. Electron. Trans. Numer. Anal. 39, 202–230 (2012)
Atkinson, K., Hansen, O., Chien, D.: A spectral method for elliptic equations: the Neumann problem. Adv. Comput. Math. 34, 295–317 (2011)
Atkinson, K., Hansen, O., Chien, D.: A spectral method for parabolic differential equations. Numer. Algoritm. doi:10.1007/s11075-012-9620-8, to appear. A preliminary version is available at arXiv:1203.6709
Dunkl, C., Xu, Y.: Orthogonal Polynomials of Several Variables. Cambridge University Press, Cambridge (2001)
Hansen, O., Atkinson, K., Chien, D.: On the norm of the hyperinterpolation operator on the unit disk and its use for the solution of the nonlinear poisson equation. IMA J. Numer. Anal. 29, 257–283 (2009). doi:10.1093/imanum/drm052
Logan, B., Shepp, L.: Optimal reconstruction of a function from its projections. Duke Math. J. 42, 645–659 (1975)
Olver, F., Lozier, D., Boisvert, R., Clark, C.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)
Stroud, A.: Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs (1971)
Xu, Y.: Representation of reproducing kernels and the Lebesgue constants on the ball. J. Approx. Theor. 112, 295–310 (2001)
Xu, Y.: Lecture notes on orthogonal polynomials of several variables. In: Advances in the Theory of Special Functions & Orthogonal Polynomials, pp. 135–188. Nova Sci. Pub., Commack (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Atkinson, K., Chien, D. & Hansen, O. Evaluating polynomials over the unit disk and the unit ball. Numer Algor 67, 691–711 (2014). https://doi.org/10.1007/s11075-013-9817-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-013-9817-5