[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A trigonometric integrator pseudospectral discretization for the N-coupled nonlinear Klein–Gordon equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A scheme, stemming from the use of pseudospectral approximations to spatial derivatives followed by a time integrator based on trigonometric polynomials, is proposed for the numerical solutions of the N-coupled nonlinear Klein–Gordon equations. Numerical tests on one- and three-coupled Klein–Gordon equations are presented, which are geared towards understanding the accuracy and stability, and illustrating its efficiency and high resolution capacity in applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  2. Ablowitz, M.J., Segur, H.: Solitons and Inverse Scattering Transformation. SIAM, Philadelphia (1981)

    Book  Google Scholar 

  3. Alagesan, T., Chung, Y., Nakkeeran, K.: Soliton solutions of coupled nonlinear Klein–Gordon equations. Chaos Soliton. Fract. 21, 879–882 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alagesan, T., Chung, Y., Nakkeeran, K.: Painlevé analysis of N-coupled nonlinear Klein–Gordon equations. J. Phys. Soc. Jpn. 72, 1818 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bao, W., Dong, X.: Analysis and comparison of numerical methods for Klein–Gordon equation in nonrelativistic limit regime. Numer. Math. 120, 189–229 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, W., Guo, B.: Fourier collocation method for solving nonlinear Klein–Gordon equation. J. Comput. Phys. 108, 296–305 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, D.: Conservation properties of numerical integrators for highly oscillatory hamiltonian systems. IMA J. Numer. Anal. 26, 34–59 (2005)

    Article  Google Scholar 

  8. Cohen, D., Hairer, E., Lubich, Ch.: Numerical energy conservation for multi-frequency oscillatory differential equations. BIT Numer. Math. 45, 287–305 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen, D., Hairer, E., Lubich, Ch.: Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations. Numer. Math. 110, 113–143 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deeba, E.Y., Khuri, S.A.: A decomposition method for solving the nonlinear Klein–Gordon equation. J. Comput. Phys. 124, 442–448 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deuflhard, P.: A study of extrapolation methods based on multistep schemes without parasitic solutions. Z. Angew. Math. Phys. 30, 177–189 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duncan, D.B.: Symplectic finite difference approximations of the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 34, 1742–1760 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grimm, V.: On error bounds for the Gautschi-type exponential integrator applied to oscillatory second-order differential equations. Numer. Math. 100, 71–89 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grimm, V.: A note on the Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 102, 61–66 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grimm, V.: On the use of the Gautschi-type exponential integrator for wave equation. In: Bermúdez de Castro, A., Gómez, D., Quintela, P., Salgado, P. (eds.) Numerical Mathematics and Advanced Applicaions (ENUMATH2005), pp. 557–563. Springer, Berlin (2006)

    Chapter  Google Scholar 

  17. Hairer, E., Lubich, Ch., Wanner, G.: Geometric Numerical Integration. Springer, Berlin (2002)

    MATH  Google Scholar 

  18. Hirota, H., Ohta, Y.: Hierarchies of coupled soliton equations. I. J. Phys. Soc. Jpn. 60, 798–809 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hirota, R.: Direct method of finding exact solutions of nonlinear evolution equations. In: Lect. Notes Math., vol. 515, pp. 40–68. Springer, Berlin (1976)

    Google Scholar 

  20. Hochbruch, M., Lubich, Ch.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 402–426 (1999)

    Google Scholar 

  21. Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 32, 1839–1875 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pascual, P.J., Jiménez, S., Vázquez, L.: Numerical simulations of a nonlinear Klein–Gordon model. Applications. In: Lect. Notes Phys., vol. 448, pp. 211–270. Springer, Berlin (1995)

    Google Scholar 

  23. Porsezian, K., Alagesan, T.: Painlevá analysis and complete integrability of coupled Klein–Gordon equations. Phys. Lett. A 198, 378–382 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006)

    MATH  Google Scholar 

  25. Vu-Quoc, L., Li, S.: Invariant-conserving finite difference algorithms for the nonlinear Klein–Gordon equation. Comput. Methods Appl. Mech. Eng. 107, 341–391 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuanchun Dong.

Additional information

This work was supported by Academic Research Fund of Ministry of Education of Singapore grant R-146-000-120-112.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, X. A trigonometric integrator pseudospectral discretization for the N-coupled nonlinear Klein–Gordon equations. Numer Algor 62, 325–336 (2013). https://doi.org/10.1007/s11075-012-9586-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9586-6

Keywords

Mathematics Subject Classification (2010)

Navigation