Abstract
A scheme, stemming from the use of pseudospectral approximations to spatial derivatives followed by a time integrator based on trigonometric polynomials, is proposed for the numerical solutions of the N-coupled nonlinear Klein–Gordon equations. Numerical tests on one- and three-coupled Klein–Gordon equations are presented, which are geared towards understanding the accuracy and stability, and illustrating its efficiency and high resolution capacity in applications.
Similar content being viewed by others
References
Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform. Cambridge University Press, Cambridge (1990)
Ablowitz, M.J., Segur, H.: Solitons and Inverse Scattering Transformation. SIAM, Philadelphia (1981)
Alagesan, T., Chung, Y., Nakkeeran, K.: Soliton solutions of coupled nonlinear Klein–Gordon equations. Chaos Soliton. Fract. 21, 879–882 (2004)
Alagesan, T., Chung, Y., Nakkeeran, K.: Painlevé analysis of N-coupled nonlinear Klein–Gordon equations. J. Phys. Soc. Jpn. 72, 1818 (2003)
Bao, W., Dong, X.: Analysis and comparison of numerical methods for Klein–Gordon equation in nonrelativistic limit regime. Numer. Math. 120, 189–229 (2012)
Cao, W., Guo, B.: Fourier collocation method for solving nonlinear Klein–Gordon equation. J. Comput. Phys. 108, 296–305 (1993)
Cohen, D.: Conservation properties of numerical integrators for highly oscillatory hamiltonian systems. IMA J. Numer. Anal. 26, 34–59 (2005)
Cohen, D., Hairer, E., Lubich, Ch.: Numerical energy conservation for multi-frequency oscillatory differential equations. BIT Numer. Math. 45, 287–305 (2005)
Cohen, D., Hairer, E., Lubich, Ch.: Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations. Numer. Math. 110, 113–143 (2008)
Deeba, E.Y., Khuri, S.A.: A decomposition method for solving the nonlinear Klein–Gordon equation. J. Comput. Phys. 124, 442–448 (1996)
Deuflhard, P.: A study of extrapolation methods based on multistep schemes without parasitic solutions. Z. Angew. Math. Phys. 30, 177–189 (1979)
Duncan, D.B.: Symplectic finite difference approximations of the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 34, 1742–1760 (1997)
Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)
Grimm, V.: On error bounds for the Gautschi-type exponential integrator applied to oscillatory second-order differential equations. Numer. Math. 100, 71–89 (2005)
Grimm, V.: A note on the Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 102, 61–66 (2005)
Grimm, V.: On the use of the Gautschi-type exponential integrator for wave equation. In: Bermúdez de Castro, A., Gómez, D., Quintela, P., Salgado, P. (eds.) Numerical Mathematics and Advanced Applicaions (ENUMATH2005), pp. 557–563. Springer, Berlin (2006)
Hairer, E., Lubich, Ch., Wanner, G.: Geometric Numerical Integration. Springer, Berlin (2002)
Hirota, H., Ohta, Y.: Hierarchies of coupled soliton equations. I. J. Phys. Soc. Jpn. 60, 798–809 (1991)
Hirota, R.: Direct method of finding exact solutions of nonlinear evolution equations. In: Lect. Notes Math., vol. 515, pp. 40–68. Springer, Berlin (1976)
Hochbruch, M., Lubich, Ch.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 402–426 (1999)
Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 32, 1839–1875 (1995)
Pascual, P.J., Jiménez, S., Vázquez, L.: Numerical simulations of a nonlinear Klein–Gordon model. Applications. In: Lect. Notes Phys., vol. 448, pp. 211–270. Springer, Berlin (1995)
Porsezian, K., Alagesan, T.: Painlevá analysis and complete integrability of coupled Klein–Gordon equations. Phys. Lett. A 198, 378–382 (1995)
Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006)
Vu-Quoc, L., Li, S.: Invariant-conserving finite difference algorithms for the nonlinear Klein–Gordon equation. Comput. Methods Appl. Mech. Eng. 107, 341–391 (1993)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by Academic Research Fund of Ministry of Education of Singapore grant R-146-000-120-112.
Rights and permissions
About this article
Cite this article
Dong, X. A trigonometric integrator pseudospectral discretization for the N-coupled nonlinear Klein–Gordon equations. Numer Algor 62, 325–336 (2013). https://doi.org/10.1007/s11075-012-9586-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-012-9586-6
Keywords
- Coupled Klein–Gordon equations
- Pseudospectral method
- Trigonometric integrator
- Soliton-soliton collision