[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Adaptive version of Simpler GMRES

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper we propose a stable variant of Simpler GMRES. It is based on the adaptive choice of the Krylov subspace basis at a given iteration step using the intermediate residual norm decrease criterion. The new direction vector is chosen as in the original implementation of Simpler GMRES or it is equal to the normalized residual vector as in the GCR method. We show that such an adaptive strategy leads to a well-conditioned basis of the Krylov subspace and we support our theoretical results with illustrative numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnoldi, W.E.: The principle of minimized iteration in the solution of the matrix eigenproblem. Q. Appl. Math. 9, 17–29 (1951)

    MATH  MathSciNet  Google Scholar 

  2. Boisvert, R.F., Pozo, R., Remington, K., Barret, R., Dongarra, J.J.: The Matrix Market: a web resource for test matrix collections web resource for test matrix collections. In: Boisvert, R.F. (ed.) Quality of Numerical Software, Assessment and Enhancement. Chapman & Hall, London (1997)

    Google Scholar 

  3. Drkošová, J., Greenbaum, A., Rozložník, M., Strakoš, Z.: Numerical stability of GMRES. BIT 35(3), 309–330 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Eisenstat, S.C., Elman, H.C., Schultz, M.H.: Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20(2), 345–357 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gershgorin, S.A.: Über die Abgrenzung der Eigenwerte einer matrix. Izv. Akad. Nauk. SSSR Ser. Mat. 7, 749–754 (1931)

    Google Scholar 

  6. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1996)

    MATH  Google Scholar 

  7. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  8. Jiránek, P., Rozložník, M., Gutknecht, M.H.: How to make Simpler GMRES and GCR more stable. SIAM J. Matrix Anal. Appl. 30(4), 1483–1499 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Liesen, J., Rozložník, M., Strakoš, Z.: Least squares residuals and minimal residual methods. SIAM J. Sci. Comput. 23(5), 1503–1525 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Paige, C.C., Rozložník, M., Strakoš, Z.: Modified Gram-Schmidt (MGS), least squares, and backward stability of MGS-GMRES. SIAM J. Matrix Anal. Appl. 28(1), 264–284 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ramage, A., Wathen, A.J.: Iterative solution techniques for the Stokes and Navier-Stokes equations. Int. J. Numer. Methods Fluids 19, 67–83 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Rozložník, M., Strakoš, Z.: Variants of the residual minimizing Krylov subspace methods. In: Marek, I. (ed.) Proceedings of the 11th Summer School Software and Analysis of Numerical Mathematics, pp. 208–225. Pilsen, University of West Bohemia (1995)

  13. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  14. Varga, R.S.: Matrix Iterative Analysis, 2nd edn. Springer, Berlin (2000)

    MATH  Google Scholar 

  15. Vinsome, P.K.W.: Orthomin, an iterative method for solving sparse sets of simultaneous linear equations. In: Proceedings of the Fourth Symposium on Reservoir Simulation, pp. 149–159. Society of Petroleum Engineers of the American Institute of Mining, Metallurgical, and Petroleum Engineers (1976)

  16. Walker, H.F., Zhou, L.: A simpler GMRES. Numer. Linear Algebra Appl. 1(6), 571–581 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Young, D.M., Kang, J.C.: Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods. Linear Algebra Appl. 34, 159–194 (1980)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Jiránek.

Additional information

The work of the first author was supported by the grant No. 201/09/P464 of the Grant Agency of the Czech Republic.

The work of the second author was supported by the project IAA100300802 of the Grant Agency of the Academy of Sciences of the Czech Republic and by the Institutional Research Plan AV0Z10300504 “Computer Science for the Information Society: Models, Algorithms, Applications”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiránek, P., Rozložník, M. Adaptive version of Simpler GMRES. Numer Algor 53, 93–112 (2010). https://doi.org/10.1007/s11075-009-9311-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-009-9311-2

Keywords

Mathematics Subject Classifications (2000)

Navigation