[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On the local convergence of a family of Euler-Halley type iterations with a parameter

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper aims to study the local convergence of a family of Euler-Halley type methods with a parameter α for solving nonlinear operator equations under the second-order generalized Lipschitz assumption. The radius r α of the optimal convergence ball and the error estimation of the method corresponding to α are estimated for each α ∈ ( − ∞ , + ∞ ). For each α > 0, we get r α  ≥ r  − α and the upper bound of the error estimation of the method with α > 0 is not larger than the one with α < 0. For each α ≤ 0, we get the precise value of r α , which is closely linked to the dynamical property of the method applied to a real or a complex function, and the optimal error estimation, which decreases when α→0 − . Results show that the method corresponding to α is better than the one corresponding to − α for each α > 0 and the Chebyshev-Euler method is the best among all methods in the family with α ∈ ( − ∞ , 0] from the view of both safe choice of the initial point and error estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amat, S., Busquier, S., Gutierrez, J.M.: Geometric constructions of iterative functions to solve nonlinear equations. J. Comput. Appl. Math. 157, 197–205 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Argyros, I.K.: On an improved unified convergence analysis for a certain class of Euler-Halley type methods. J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 13, 207–215 (2006)

    MATH  MathSciNet  Google Scholar 

  3. Argyros, I.K., Chen, D.: Results on the Chebyshev method in Banach spaces. Proyecciones 12, 119–128 (1993)

    MATH  MathSciNet  Google Scholar 

  4. Argyros, I.K., Chen, D., Qian, Q.: A convergence analysis for rational methods with a parameter in Banach space. Pure Math. Appl. 5, 59–73 (1994)

    MATH  MathSciNet  Google Scholar 

  5. Candela, V., Marquina, A.: Recurrence relations for rational cubic methods I. The Halley method. Computing 44, 169–184 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Candela, V., Marquina, A.: Recurrence relations for rational cubic methods II. The Chebyshev method. Computing 45, 355–367 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, D., Argyros, I.K., Qian, Q.: A local convergence theorem for the Supper-Halley method in a Banach space. Appl. Math. Lett. 7, 49–52 (1994)

    Article  MathSciNet  Google Scholar 

  8. Ezquerro, J.A., Hernandez, M.A.: New Kantorovich-type conditions for Halley’s method. Appl. Numer. Anal. Comput. Math. 2, 70–77 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ezquerro, J.A., Hernandez, M.A.: On the R-order of the Halley method. J. Math. Anal. Appl. 303, 591–601 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ezquerro, J.A., Hernandez, M.A.: Halley’s method for operators with unbounded second derivative. Appl. Numer. Math. 57, 354–360 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gutierrez, J.M., Hernandez, M.A.: A family of Chebyshev-Halley type methods in Banach space. Bull. Aust. Math. Soc. 55, 113–130 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gutierrez, J.M., Hernandez, M.A.: An acceleration of Newton’s method: Super-Halley method. Appl. Math. Comput. 117, 223–239 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Han, D.: The convergence on a family of iterations with cubic order. J. Comput. Math. 19, 467–474 (2001)

    MATH  MathSciNet  Google Scholar 

  14. Hernandez, M.A., Salanova, M.A.: A family of Chebyshev-Halley type methods. Int. J. Comput. Math. 47, 59–63 (1993)

    Article  MATH  Google Scholar 

  15. Huang, Z.: On a family of Chebyshev-Halley type methods in Banach space under weaker Smale condition. Numer. Math. JCU 9, 37–44 (2000)

    MATH  Google Scholar 

  16. Wang, H., Li, C., Wang, X.: On relationship between convergence ball of Euler iteration in Banach spaces and its dynamical behavior on Riemann spheres. Sci. China Ser. A 46, 376–382 (2003)

    MathSciNet  Google Scholar 

  17. Wang, X.: Convergence on the iteration of Halley family in weak conditions. Chin. Sci. Bull. 42, 552–555 (1997)

    Article  MATH  Google Scholar 

  18. Wang, X.: Convergence of the iteration of Halley’s family and Smale operator class in Banach space. Sci. China Ser. A 41, 700–709 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wang, X.: Convergence of iterations of Euler family under weak condition. Sci. China Ser. A 43, 958–962 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wang, X., Li, C.: Local and global behavior for algorithms of solving equations. Chin. Sci. Bull. 46, 441–448 (2001)

    Article  MATH  Google Scholar 

  21. Wang, X., Li, C.: On the united theory of the family of Euler-Halley type methods with cubical convergence in Banach spaces. J. Comput. Math. 21, 195–200 (2003)

    MATH  MathSciNet  Google Scholar 

  22. Werner, W.: Some improvement of classical methods for the solution of nonlinear equations. In: Allgower, E.L., Glashoff, K., Peitgen, H.-O. (eds.) Numerical Solution of Nonlinear Equations. Lecture Notes in Mathematics, vol. 878, pp. 426–440. Springer, Berlin (1981)

    Chapter  Google Scholar 

  23. Ye, X., Li, C.: Convergence of the family of the deformed Euler-Halley iterations under the Holder condition of the second derivative. J. Comput. Appl. Math. 194, 294–308 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ye, X., Li, C., Shen, W.: Convergence of the variants of the Chebyshev-Halley iteration family under the Holder condition of the first derivative. J. Comput. Appl. Math. 203, 279–288 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huang Zhengda.

Additional information

This work was supported of NSFC(Grant No.10731060).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhengda, H., Guochun, M. On the local convergence of a family of Euler-Halley type iterations with a parameter. Numer Algor 52, 419–433 (2009). https://doi.org/10.1007/s11075-009-9284-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-009-9284-1

Keywords

Mathematics Subject Classifications (2000)

Navigation