[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Error estimates for the regularization of least squares problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The a posteriori estimate of the errors in the numerical solution of ill-conditioned linear systems with contaminated data is a complicated problem. Several estimates of the norm of the error have been recently introduced and analyzed, under the assumption that the matrix is square and nonsingular. In this paper we study the same problem in the case of a rectangular and, in general, rank-deficient matrix. As a result, a class of error estimates previously introduced by the authors (Brezinski et al., Numer Algorithms, in press, 2008) are extended to the least squares solution of consistent and inconsistent linear systems. Their application to various direct and iterative regularization methods are also discussed, and the numerical effectiveness of these error estimates is pointed out by the results of an extensive experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auchmuty, G.: A posteriori error estimates for linear equations. Numer. Math. 61, 1–6 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)

    Google Scholar 

  3. Brezinski, C.: Error estimates for the solution of linear systems. SIAM J. Sci. Comput. 21, 764–781 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brezinski, C., Rodriguez, G., Seatzu, S.: Error estimates for linear systems with applications to regularization. Numer. Algorithms 49 (2008, in press)

  5. Craven, P., Wahba, G.: Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross validation. Numer. Math. 31, 377–403 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  6. Galantai, A.: A study of Auchmuty’s error estimate. Comput. Math. Appl. 42, 1093–1102 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Golub, G.H., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2), 215–223 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  8. Golub, G.H., Van Loan, C.F.: Matrix Computations. The John Hopkins University Press, Baltimore (1989)

    MATH  Google Scholar 

  9. Golub, G.H., von Matt, U.: Generalized cross-validation for large-scale problems. J. Comput. Graph. Stat. 6(1), 1–34 (1997)

    Article  Google Scholar 

  10. Hansen, P.C.: Regularization tools version 4.0 for matlab 7.3. Numer. Algorithms 46, 189–194 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. SIAM, Philadelphia (1998)

    Google Scholar 

  12. Hansen, P.C., Jensen, T.K., Rodriguez, G.: An adaptive pruning algorithm for the discrete L-curve criterion. J. Comput. Appl. Math. 198, 483–492 (2006)

    Article  MathSciNet  Google Scholar 

  13. Hansen, P.C., O’Leary, D.P.: The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Statist. Comput. 14, 1487–1503 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49, 409–436 (1952)

    MATH  MathSciNet  Google Scholar 

  15. Matlab ver. 7.5, The MathWorks. Inc., Natick, MA (2007)

  16. van der Mee, C.V.M., Seatzu, S.: A method for generating infinite positive self-adjoint test matrices and Riesz bases. SIAM J. Matrix Anal. Appl. 26, 1132–1149 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Paige, C.C., Saunders, M.A.: Towards a generalized singular value decomposition. SIAM J. Numer. Anal. 18(3), 398–405 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  18. Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8, 43–71 (1982)

    Article  MATH  Google Scholar 

  19. Varah, J.M.: The Prolate matrix. Linear Algebra Appl. 187, 269–278 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rodriguez.

Additional information

This work was supported by MIUR under the PRIN grant no. 2006017542-003, and the University of Cagliari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brezinski, C., Rodriguez, G. & Seatzu, S. Error estimates for the regularization of least squares problems. Numer Algor 51, 61–76 (2009). https://doi.org/10.1007/s11075-008-9243-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9243-2

Keywords

Navigation