[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On bi-orthogonal systems of trigonometric functions and quadrature formulas for periodic integrands

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, quadrature formulas with an arbitrary number of nodes and exactly integrating trigonometric polynomials up to degree as high as possible are constructed in order to approximate 2π-periodic weighted integrals. For this purpose, certain bi-orthogonal systems of trigonometric functions are introduced and their most relevant properties studied. Some illustrative numerical examples are also given. The paper completes the results previously given by Szegő in Magy Tud Akad Mat Kut Intez Közl 8:255–273, 1963 and by some of the authors in Annales Mathematicae et Informaticae 32:5–44, 2005.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertola, M., Gekhtman, M.: Biorthogonal Laurent polynomials, Töplitz determinants, minimal Toda orbits and isomonodromic tau functions. Constr. Approx. OF1–OF48 (2007) www.mathstat.concordia.ca/faculty/bertola/Research_files.html

  2. Brezinski, C.: Biorthogonality and its applications to numerical analysis. In: Lecture Notes in Pure and Applied Mathematics. Marcel Dekker, New York (1992)

    Google Scholar 

  3. Camacho, M., González-Vera, P.: A note on para-orthogonality and bi-orthogonality. Det Kongelige Norske Videnskabers Selskabs Skrifter 3, 1–16 (1992)

    Google Scholar 

  4. Cantero, M.J., Cruz-Barroso, R., González-Vera, P.: A matrix approach to the computation of quadrature formulas on the unit circle. Appl. Numer. Math. (2007) arXiv:math/0606388 (in press)

  5. Cantero, M., Moral, L., Velázquez, L.: Measures and paraorthogonal polynomials on the unit circle. East J. Approx. 8, 447–464 (2002)

    Google Scholar 

  6. Cruz-Barroso, R., Daruis, L., González-Vera, P., Njåstad, O.: Quadrature rules for periodic integrands. Bi-orthogonality and para-orthogonality. Annales Mathematicae et Informaticae 32, 5–44 (2005). Available at www.ektf.hu/tanszek/matematika/ami/

  7. Cruz-Barroso, R., Daruis, L., González-Vera, P., Njåstad, O.: Sequences of orthogonal Laurent polynomials, bi-orthogonality and quadrature formulas on the unit circle. J. Comput. Appl. Math. 200, 424–440 (2007)

    Article  MATH  Google Scholar 

  8. Davis, P.J.: Interpolation and Approximation. Dover, New York (1975)

  9. Geronimus, Ya.L.: Orthogonal Polynomials: Estimates, Asymptotic Formulas, and Series of Polynomials Orthogonal on the Unit Circle and on an Interval. Consultants Bureau, New York (1961)

    Google Scholar 

  10. Golinskii, L.: Quadrature formulas and zeros of paraorthogonal polynomials on the unit circle. Acta Math. Hung. 96, 169–186 (2002)

    Article  MATH  Google Scholar 

  11. González-Vera, P., Santos-León, J.C., Njåstad, O.: Some results about numerical quadrature on the unit circle. Adv. Comput. Math. 5, 297–328 (1996)

    Article  MATH  Google Scholar 

  12. Gragg, W.B.: Positive definite Toeplitz matrices, the Arnoldi process for isometric operators and Gaussian quadrature on the unit circle. J. Comput. Appl. Math. 46, 183–198 (1993) This is a slightly revised version of a paper by the same author and published in Russian, In: E.S. Nicholaev (ed.), Numerical Methods in Linear Algebra, Moscow University Press, Moscow, pp. 16–32 (1982)

    Article  MATH  Google Scholar 

  13. Grenander, U., Szegő, G.: Toeplitz Forms and Their Applications. Chelsea, New York (1984)

    MATH  Google Scholar 

  14. Jagels, C., Reichel, L.: Szegő–Lobatto quadrature rules. J. Comput. Appl. Math. 200, 116–126 (2007)

    Article  MATH  Google Scholar 

  15. Jones, W.B., Njåstad, O., Thron, W.J.: Moment theory, orthogonal polynomials, quadrature, and continued fractions associated with the unit circle. Bull. Lond. Math. Soc. 21, 113–152 (1989)

    Article  MATH  Google Scholar 

  16. Kuijlaars, A.B.J., McLaughlin, K.T-R.: A Riemann–Hilbert problem for biorthogonal polynomials. J. Comput. Appl. Math. 178, 313–320 (2005)

    Article  MATH  Google Scholar 

  17. Madhekar, H.C., Thakare, N.K.: Biorthogonal polynomials suggested by the Jacobi polynomials. Pac. J. Math. 100(2), 417–424 (1982)

    MATH  Google Scholar 

  18. Morgera, S.D.: On bi-orthogonality of Hermitian and skew-Hermitian Szegő/Levinson polynomials. IEEE Trans. Acoust. Speech Signal Process. 37(3), 436–439 (1989)

    Article  Google Scholar 

  19. Simon, B.: Orthogonal polynomials on the unit circle. Part 1: Classical theory. In: Amer. Math. Soc. Coll. Publ., vol. 54.1. Amer. Math. Soc., Providence, RI (2005)

  20. Simon, B.: Rank one perturbations and zeros of paraorthogonal polynomials on the unit circle. J. Math. Anal. Appl. 329, 376–382 (2007)

    Article  MATH  Google Scholar 

  21. Szegő, G.: On bi-orthogonal systems of trigonometric polynomials. Magy. Tud. Akad. Mat. Kut. Intez. Közl 8, 255–273 (1963)

    Google Scholar 

  22. Szegő, G.: Orthogonal polynomials. In: Amer. Math. Soc. Coll. Publ., vol 23. American Mathematical Society. Providence, RI (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruymán Cruz-Barroso.

Additional information

This work was partially supported by the research project MTM 2005-08571 of the Spanish Government.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruz-Barroso, R., González-Vera, P. & Njåstad, O. On bi-orthogonal systems of trigonometric functions and quadrature formulas for periodic integrands. Numer Algor 44, 309–333 (2007). https://doi.org/10.1007/s11075-007-9106-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-007-9106-2

Keywords

Mathematics Subject Classifications (2000)

Navigation