Abstract
In this paper, quadrature formulas with an arbitrary number of nodes and exactly integrating trigonometric polynomials up to degree as high as possible are constructed in order to approximate 2π-periodic weighted integrals. For this purpose, certain bi-orthogonal systems of trigonometric functions are introduced and their most relevant properties studied. Some illustrative numerical examples are also given. The paper completes the results previously given by Szegő in Magy Tud Akad Mat Kut Intez Közl 8:255–273, 1963 and by some of the authors in Annales Mathematicae et Informaticae 32:5–44, 2005.
Similar content being viewed by others
References
Bertola, M., Gekhtman, M.: Biorthogonal Laurent polynomials, Töplitz determinants, minimal Toda orbits and isomonodromic tau functions. Constr. Approx. OF1–OF48 (2007) www.mathstat.concordia.ca/faculty/bertola/Research_files.html
Brezinski, C.: Biorthogonality and its applications to numerical analysis. In: Lecture Notes in Pure and Applied Mathematics. Marcel Dekker, New York (1992)
Camacho, M., González-Vera, P.: A note on para-orthogonality and bi-orthogonality. Det Kongelige Norske Videnskabers Selskabs Skrifter 3, 1–16 (1992)
Cantero, M.J., Cruz-Barroso, R., González-Vera, P.: A matrix approach to the computation of quadrature formulas on the unit circle. Appl. Numer. Math. (2007) arXiv:math/0606388 (in press)
Cantero, M., Moral, L., Velázquez, L.: Measures and paraorthogonal polynomials on the unit circle. East J. Approx. 8, 447–464 (2002)
Cruz-Barroso, R., Daruis, L., González-Vera, P., Njåstad, O.: Quadrature rules for periodic integrands. Bi-orthogonality and para-orthogonality. Annales Mathematicae et Informaticae 32, 5–44 (2005). Available at www.ektf.hu/tanszek/matematika/ami/
Cruz-Barroso, R., Daruis, L., González-Vera, P., Njåstad, O.: Sequences of orthogonal Laurent polynomials, bi-orthogonality and quadrature formulas on the unit circle. J. Comput. Appl. Math. 200, 424–440 (2007)
Davis, P.J.: Interpolation and Approximation. Dover, New York (1975)
Geronimus, Ya.L.: Orthogonal Polynomials: Estimates, Asymptotic Formulas, and Series of Polynomials Orthogonal on the Unit Circle and on an Interval. Consultants Bureau, New York (1961)
Golinskii, L.: Quadrature formulas and zeros of paraorthogonal polynomials on the unit circle. Acta Math. Hung. 96, 169–186 (2002)
González-Vera, P., Santos-León, J.C., Njåstad, O.: Some results about numerical quadrature on the unit circle. Adv. Comput. Math. 5, 297–328 (1996)
Gragg, W.B.: Positive definite Toeplitz matrices, the Arnoldi process for isometric operators and Gaussian quadrature on the unit circle. J. Comput. Appl. Math. 46, 183–198 (1993) This is a slightly revised version of a paper by the same author and published in Russian, In: E.S. Nicholaev (ed.), Numerical Methods in Linear Algebra, Moscow University Press, Moscow, pp. 16–32 (1982)
Grenander, U., Szegő, G.: Toeplitz Forms and Their Applications. Chelsea, New York (1984)
Jagels, C., Reichel, L.: Szegő–Lobatto quadrature rules. J. Comput. Appl. Math. 200, 116–126 (2007)
Jones, W.B., Njåstad, O., Thron, W.J.: Moment theory, orthogonal polynomials, quadrature, and continued fractions associated with the unit circle. Bull. Lond. Math. Soc. 21, 113–152 (1989)
Kuijlaars, A.B.J., McLaughlin, K.T-R.: A Riemann–Hilbert problem for biorthogonal polynomials. J. Comput. Appl. Math. 178, 313–320 (2005)
Madhekar, H.C., Thakare, N.K.: Biorthogonal polynomials suggested by the Jacobi polynomials. Pac. J. Math. 100(2), 417–424 (1982)
Morgera, S.D.: On bi-orthogonality of Hermitian and skew-Hermitian Szegő/Levinson polynomials. IEEE Trans. Acoust. Speech Signal Process. 37(3), 436–439 (1989)
Simon, B.: Orthogonal polynomials on the unit circle. Part 1: Classical theory. In: Amer. Math. Soc. Coll. Publ., vol. 54.1. Amer. Math. Soc., Providence, RI (2005)
Simon, B.: Rank one perturbations and zeros of paraorthogonal polynomials on the unit circle. J. Math. Anal. Appl. 329, 376–382 (2007)
Szegő, G.: On bi-orthogonal systems of trigonometric polynomials. Magy. Tud. Akad. Mat. Kut. Intez. Közl 8, 255–273 (1963)
Szegő, G.: Orthogonal polynomials. In: Amer. Math. Soc. Coll. Publ., vol 23. American Mathematical Society. Providence, RI (1975)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was partially supported by the research project MTM 2005-08571 of the Spanish Government.
Rights and permissions
About this article
Cite this article
Cruz-Barroso, R., González-Vera, P. & Njåstad, O. On bi-orthogonal systems of trigonometric functions and quadrature formulas for periodic integrands. Numer Algor 44, 309–333 (2007). https://doi.org/10.1007/s11075-007-9106-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-007-9106-2