Abstract
Least squares regression (LSR) is widely used for pattern classification. Some variants based on it try to enlarge the margin between different classes to achieve better performance. However, the large margin classifier doesn’t work well when it deals with the complex applications in the real world, such as face recognition, where images are captured with different facial expressions, lighting conditions or background. To address this problem, we propose a regularized negative label relaxation least squares regression method with the following characteristics. First, we introduce a negative \( \varepsilon \) dragging technique to relax the strict binary label matrix into a slack label matrix, which has more freedom to fit the labels and reduces the class margins at the same time. Second, we introduce manifold learning and class compactness graph to devise a regularization item to preserve the intrinsic structure of data and avoid the problem of overfitting. The class compactness graph can enable samples from the same class to be kept close together after they are transformed into the slack label space. The algorithm based on L2-norm loss function is devised. The experimental results show that our algorithm achieves better classification accuracy.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Xu Y, Li Z, Zhang B, Yang J, You J (2017) Sample diversity, representation effectiveness and robust dictionary learning for face recognition. Inf Sci 375:171–182. https://doi.org/10.1016/j.ins.2016.09.059
Peng Y, Li L, Liu S, Li J, Wang X (2018) Extended sparse representation based classification method for face recognition. Mach Vis Appl 29(6):991–1007
Liu S, Li L, Jin M, Hou S, Peng Y (2019) Optimized coefficient vector and representation based classification methods for face recognition. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2960928
Liu Z, Lai Z, Ou W et al (2020) Structured optimal graph based sparse feature extraction for semi-supervised learning. Sig Process. https://doi.org/10.1016/j.sigpro.2020.107456
Xu Y, Zhong Z, Yang J, You J, Zhang D (2017) A New Discriminative Sparse Representation Method for Robust Face Recognition via ℓ2 Regularization. IEEE Trans Neural Netw 28(10):2233–2242
Liu W, Zha Z, Wang Y, Lu K, Tao D (2016) p-Laplacian Regularized Sparse Coding for Human Activity Recognition. IEEE Trans Ind Electron 63(8):5120–5129
Gong C, Liu T, Tang Y, Yang J, Yang J, Tao D (2018) A regularization approach for instance-based superset label learning. IEEE Trans Syst Man Cybern 48(3):967–978
Yang Y, Liu Q, He X, Liu Z (2019) Cross-view multi-lateral filter for compressed multi-view depth video. IEEE Trans Image Process 28(1):302–315
Liu S, Peng Y, Ben X, Yang W, Qiu G (2016) A novel label learning algorithm for face recognition. Sig Process 124:141–146
Fang Y, Wang J, Narwaria M, Callet PL, Lin W (2014) Saliency detection for stereoscopic images. IEEE Trans Image Process 23(6):2625–2636
Zuo W, Wang P, Zhang D (2016) Comparison of three different types of wrist pulse signals by their physical meanings and diagnosis performance. IEEE J Biomed Health Inform 20(1):119–127
Peng Y, Li L, Liu S, Wang X, Li J (2018) Weighted constraint based dictionary learning for image classification. Pattern Recogn Lett. https://doi.org/10.1016/j.patrec.2018.09.008
Liu H, Xu B, Lu D et al (2018) A Path Planning Approach for Crowd Evacuation in Buildings Based on Improved Artificial Bee Colony Algorithm. Appl Soft Comput 68:360–376
Yang Y, Li B, Li P, Liu Q (2019) A two-stage clustering based 3d visual saliency model for dynamic scenarios. IEEE Trans Multimed 21(4):809–820
Yu J, Tan M, Zhang H, Tao D, Rui Y (2019) Hierarchical deep click feature prediction for fine-grained image recognition. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2019.2932058
Tu B, Zhang X, Kang X, Wang J, Benediktsson J (2019) Spatial density peak clustering for hyperspectral image classification with noisy labels. IEEE Trans Geosci Remote Sens 57(7):5085–5097
Peng Y, Ke J, Liu S, Li J, Lei T (2019) An improvement to linear regression classification for face recognition. Int J Mach Learn Cybernet 10(9):2229–2243
Du B, Xiong W, Wu J, Zhang L, Zhang L, Tao D (2017) Stacked convolutional denoising auto-encoders for feature representation. IEEE Trans Syst Man Cybern 47(4):1017–1027
Liu S, Peng Y, Sun Z, Wang X (2019) Self-calibration of projective camera based on trajectory basis. J Comput Sci 31:45–53
Lai Z, Xu Y, Yang J, Shen L, Zhang D (2017) Rotational invariant dimensionality reduction algorithms. IEEE Trans Syst Man Cybern 47(11):3733–3746
Liu Z, Wang J, Liu G et al (2019) Discriminative low-rank preserving projection for dimensionality reduction. Appl Soft Comput 85:105768
Yang W, Sun C, Zheng W (2016) A regularized least square based discriminative projections for feature extraction. Neurocomputing 175:198–205
Yu J, Zhu C, Zhang J, Huang Q, Tao D (2019) Spatial pyramid-enhanced NetVLAD with and weighted triplet loss for place recognition. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2019.2908982
Tu B, Huang S, Fang L, Zhang G, Wang J, Zheng B (2018) Hyperspectral image classification via weighted joint nearest neighbor and sparse representation. IEEE J Sel Top Appl Earth Obs Remote Sens 11(11):4063–4075
Du B, Wang S, Wang N, Zhang L, Tao D, Zhang L (2016) Hyperspectral signal unmixing based on constrained non-negative matrix factorization approach. Neurocomputing 204:153–161
Liu T, Tao D (2016) On the performance of manhattan nonnegative matrix factorization. IEEE Trans Neural Netw 27(9):1851–1863
Yang J, Zhu Y, Li K, Yang J, Hou C (2018) Tensor completion from structurally-missing entries by low-tt-rankness and fiber-wise sparsity. IEEE J Sel Top Signal Process 12(6):1420–1434
Li K, Dai Q, Xu W et al (2012) Temporal-dense dynamic 3D reconstruction with low frame rate cameras”. IEEE J Sel Top Signal Process 6(5):447–459
Liu S, Peng Y (2012) A local region-based Chan-Vese model for image segmentation. Pattern Recogn 45(7):2769–2779
Peng Y, Liu S, Qian Y, Wu X, Hong L (2019) A local mean and variance active contour model for biomedical image segmentation. J Comput Sci 33:11–19
Xu Y, Fang X, Li X, Yang J, You J, Liu H, Teng S (2014) Data Uncertainty in Face Recognition. IEEE Trans Syst Man Cybern 44(10):1950–1961
Du B, Zhang M, Zhang L, Hu R, Tao D (2017) Pltd: patch-Based low-rank tensor decomposition for hyperspectral images. IEEE Trans Multimed 19(1):67–79
Gong C, Fu K, Loza A, Wu Q, Liu J, Yang J (2014) Pagerank tracker: from ranking to tracking. IEEE Trans Syst Man Cybern 44(6):882–893
Gong C, Tao D, Maybank SJ, Liu W, Kang G, Yang J (2016) Multi-modal curriculum learning for semi-supervised image classification. IEEE Trans Image Process 25(7):3249–3260
Fang Y, Fang Z, Yuan F, Yang Y, Yang S, Xiong N (2017) Optimized multioperator image retargeting based on perceptual similarity measure. IEEE Trans Syst Man Cybern 47(11):2956–2966
Du B, Zhang L (2011) Random-Selection-Based Anomaly Detector for Hyperspectral Imagery. IEEE Trans Geosci Remote Sens 49(5):1578–1589
Ding C, Tao D (2016) A comprehensive survey on pose-invariant face recognition. ACM Trans Intell Syst Technol 7(3):1–42
Lai Z, Wong WK, Xu Y, Yang J, Zhang D (2016) Approximate orthogonal sparse embedding for dimensionality reduction. IEEE Trans Neural Netw 27(4):723–735
Xu Y, Fei L, Zhang D (2015) Combining left and right palmprint images for more accurate personal identification. IEEE Trans Image Process 24(2):549–559
Gong C, Liu T, Tao D, Fu K, Tu E, Yang J (2015) Deformed graph laplacian for semisupervised learning. IEEE Trans Neural Netw 26(10):2261–2274
Xu Y, Zhang Z, Lu G, Yang J (2016) Approximately symmetrical face images for image preprocessing in face recognition and sparse representation based classification. Pattern Recogn 54(54):68–82
Fang Y, Wang Z, Lin W, Fang Z (2014) Video saliency incorporating spatiotemporal cues and uncertainty weighting. IEEE Trans Image Process 23(9):3910–3921
Peng Y, Li L, Liu S, Lei T (2018) Space-frequency domain based joint dictionary learning and collaborative representation for face recognition. Sig Process 147:101–109
Yang W, Zhang X, Li J (2020) A Local Multiple Patterns Feature Descriptor for Face Recognition. Neurocomputing 373:109–122
Liu H, Liu B, Zhang H et al (2018) Crowd evacuation simulation approach based on navigation knowledge and two-layer control mechanism. Inf Sci 436–437:247–267
Nie F, Wang H, Huang H, Ding C (2013) Adaptive Loss Minimization for Semi-Supervised Elastic Embedding. In: The Twenty-Third international joint conference on Artificial Intelligence pp 1565–1571
Tu B, Zhou C, Kuang W, Guo L, Ou X (2018) Hyperspectral imagery noisy label detection by spectral angle local outlier factor. IEEE Geosci Remote Sens Lett 15(9):1417–1421
Yang W, Li J, Zheng H, Xu R (2018) A Nuclear Norm Based Matrix Regression Based Projections Method for Feature Extraction. IEEE Access 6:7445–7451
Yang J, Gan Z, Li K, Hou C (2015) Graph-based segmentation for RGB-D data using 3-D geometry enhanced superpixels. IEEE Trans Cybern 45(5):913–926
Fang X, Xu Y, Li X, Lai Z, Wong W (2015) Learning a nonnegative sparse graph for linear regression. IEEE Trans Image Process 24(9):2760–2771
Liu S, Li L, Peng Y, Qiu G, Lei T (2017) Improved sparse representation method for image classification. IET Comput Vis 11(4):319–330
Fan Z, Xu Y, Zhang D (2011) Local linear discriminant analysis framework using sample neighbors. IEEE Trans Neural Netw 22(7):1119–1132
Gong C, Tao D, Liu W, Liu L, Yang J (2017) Label propagation via teaching-to-learn and learning-to-teach. IEEE Trans Neural Netw 28(6):1452–1465
Łȩski J (2003) Ho–Kashyap classifier with generalization control. Pattern Recogn Lett 24(14):2281–2290
Xiang S, Nie F, Meng G, Pan C, Zhang C (2012) discriminative least squares regression for multiclass classification and feature selection. IEEE Trans Neural Netw 23(11):1738–1754
Du B, Wei Q, Liu R (2019) An improved quantum-behaved particle swarm optimization for endmember extraction. IEEE Trans Geosci Remote Sens. https://doi.org/10.1109/TGRS.2019.2903875
Xu Y, Lu Y (2015) Adaptive Weighted Fusion. Neurocomputing 168:566–574
Lai Z, Xu Y, Jin Z, Zhang D (2014) Human gait recognition via sparse discriminant projection learning. IEEE Trans Circuits Syst Video Technol 24(10):1651–1662
Yang W, Zhou L, Li T, Wang H (2019) A face detection method based on cascade convolutional neural network. Multimed Tools Appl 78(17):24373–24390
Tu B, Yang X, Li N, Zhou C, He D (2020) Hyperspectral anomaly detection via density peak clustering. Pattern Recogn Lett 129:144–149
Peng Y, Liu S, Lei T, Li J, Guo M (2018) Negative ε dragging technique for pattern classification. IEEE Access 6:488–494
Peng Y, Zhang L, Liu S, Wang X, Guo M (2017) Kernel negative ε dragging linear regression for pattern classification. Complexity 2691474:1–14
Liu W, Liu H, Tao D, Wang Y, Lu K (2015) Multiview Hessian regularized logistic regression for action recognition. Sig Process 110:101–107
Nie F, Huang H, Cai X, Ding C (2010) Efficient and robust feature selection via joint ℓ2, 1-Norms Minimization. In: 24th Annual conference on neural information processing systems vol 23, pp 1813–1821
Du B, Zhang L, Zhang L, Chen T, Wu K (2012) A discriminative manifold learning based dimension reduction method for hyperspectral classification. Int J Fuzzy Syst 14(2):272–277
Peng Y, Sehdev P, Liu S, Li J, Wang X (2018) l2,1-norm minimization based negative label relaxation linear regression for feature selection. Pattern Recogn Lett 116:170–178
Liu W, Zhang L, Tao D, Cheng J (2017) Support vector machine active learning by hessian regularization. J Vis Commun Image Represent 49:47–56
Tu B, Zhou C, He D, Huang S, Plaza A (2019) Hyperspectral classification with noisy label detection via superpixel-to-pixel weighting distance. IEEE Trans Geosci Remote Sens. https://doi.org/10.1109/TGRS.2019.2961141
Peng Y, Liu S, Wang X, Wu X (2019) Joint local constraint and fisher discrimination based dictionary learning for image classification. Nuerocomputing. https://doi.org/10.1016/j.neucom.2019.05.103
Li X, Lin S, Yan S, Xu D (2008) Discriminant locally linear embedding with high-order tensor data. IEEE Trans Cybern 38(2):342–352
He X, Yan S, Hu Y, Niyogi P, Zhang H (2005) Face recognition using laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340
Peng Y, Li L, Liu S, Lei T, Wu J (2018) A new virtual samples-based CRC method for face recognition. Neural Process Lett 48:313–327
Liu W, Yang X, Tao D, Cheng J, Tang Y (2018) Multiview dimension reduction via Hessian multiset canonical correlations. Inf Fus 41:119–128
Tenenbaum J, Silva V, Langford J (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323
Acknowledgements
This work is supported by the National Key R&D Program of China (No. 2017YFB1402102), the National Natural Science Foundation of China (Nos. 61873155, 61672333, 61703096, 11772178), Transfer and Promotion Plan of Scientific and Technological Achievements of Shaanxi Province (No. 2019CGXNG-019), the National Natural Science Foundation of Shaanxi Province (No. 2018JM6050), Innovation Chain of Key Industries of Shaanxi Province (No. 2019ZDLSF07-01), the Key Science and Technology Program of Shaanxi Province, (No. 2016GY-081).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
He, K., Peng, Y., Liu, S. et al. Regularized Negative Label Relaxation Least Squares Regression for Face Recognition. Neural Process Lett 51, 2629–2647 (2020). https://doi.org/10.1007/s11063-020-10219-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11063-020-10219-6