[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Learning Multi-level Deep Representations for Image Emotion Classification

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper, we propose a new deep network that learns multi-level deep representations for image emotion classification (MldrNet). Image emotion can be recognized through image semantics, image aesthetics and low-level visual features from both global and local views. Existing image emotion classification works using hand-crafted features or deep features mainly focus on either low-level visual features or semantic-level image representations without taking all factors into consideration. The proposed MldrNet combines deep representations of different levels, i.e. image semantics, image aesthetics and low-level visual features to effectively classify the emotion types of different kinds of images, such as abstract paintings and web images. Extensive experiments on both Internet images and abstract paintings demonstrate the proposed method outperforms the state-of-the-art methods using deep features or hand-crafted features. The proposed approach also outperforms the state-of-the-art methods with at least 6% performance improvement in terms of overall classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. We have 88,298 noisy labeled images and 23,164 manually labeled images as some images no longer exists in the Internet.

References

  1. Alameda-Pineda X, Ricci E, Yan Y, Sebe N (2016) Recognizing emotions from abstract paintings using non-linear matrix completion. In: CVPR

  2. Andrearczyk V, Whelan PF (2016) Using filter banks in convolutional neural networks for texture classification. Pattern Recognit Lett 84:63–69

    Article  Google Scholar 

  3. Aronoff J (2006) How we recognize angry and happy emotion in people, places, and things. Cross-Cult Res 40(1):83–105

    Article  Google Scholar 

  4. Borth D, Ji R, Chen T, Breuel T, Chang SF (2013) Large-scale visual sentiment ontology and detectors using adjective noun pairs. In: ACM MM

  5. Chen CH, Patel VM, Chellappa R (2015) Matrix completion for resolving label ambiguity. In: CVPR

  6. Chen T, Yu FX, Chen J, Cui Y, Chen YY, Chang SF (2014) Object-based visual sentiment concept analysis and application. In: ACM MM

  7. Cui Z, Shi X, Chen Y (2016) Sentiment analysis via integrating distributed representations of variable-length word sequence. Neurocomputing 187:126–132

    Article  Google Scholar 

  8. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. In: CVPR

  9. Hanjalic A (2006) Extracting moods from pictures and sounds: towards truly personalized TV. IEEE Signal Process Mag 23(2):90–100

    Article  Google Scholar 

  10. Hanjalic A, Xu LQ (2005) Affective video content representation and modeling. IEEE Trans Multimed 7(1):143–154

    Article  Google Scholar 

  11. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR, pp 770–778

  12. Hu C, Xu Z, Liu Y, Mei L, Chen L, Luo X (2014) Semantic link network-based model for organizing multimedia big data. IEEE Trans Emerg Top Comput 2(3):376–387

    Article  Google Scholar 

  13. Itten J, Van Haagen E (1962) The art of colorthe subjective experience and objective rationale of colour. Reinhold, New York

    Google Scholar 

  14. Joachims T (1999) Transductive inference for text classification using support vector machines. In: ICML

  15. Joshi D, Datta R, Fedorovskaya E, Luong QT, Wang JZ, Li J, Luo J (2011) Aesthetics and emotions in images. IEEE Signal Process Mag 28(5):94–115

    Article  Google Scholar 

  16. Jufeng Y, Ming S, Xiaoxiao S (2017) Learning visual sentiment distributions via augmented conditional probability neural network. In: AAAI

  17. Jufeng Y, Dongyu S, Ming S, Ming-Ming C, Rosin PL, Liang W (2018) Visual sentiment prediction based on automatic discovery of affective regions. TMM 99:1–1

    Google Scholar 

  18. Kang HB (2003) Affective content detection using HMMs. In: ACM MM

  19. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: NIPS

  20. Lang PJ (1979) A bio-informational theory of emotional imagery. Psychophysiology 16(6):495–512

    Article  Google Scholar 

  21. Lang PJ, Bradley MM, Cuthbert BN (2008) International affective picture system (IAPs): affective ratings of pictures and instruction manual. Technical report A-8

  22. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: CVPR

  23. Lu X, Suryanarayan P, Adams Jr RB, Li J, Newman MG, Wang JZ (2012) On shape and the computability of emotions. In: ACM MM

  24. Lu X, Lin Z, Jin H, Yang J, Wang JZ (2014) Rapid: rating pictorial aesthetics using deep learning. In: ACM MM

  25. Machajdik J, Hanbury A (2010) Affective image classification using features inspired by psychology and art theory. In: ACM MM, pp 83–92

  26. Mikels JA, Fredrickson BL, Larkin GR, Lindberg CM, Maglio SJ, Reuter-Lorenz PA (2005) Emotional category data on images from the international affective picture system. Behav Res Methods 37(4):626–630

    Article  Google Scholar 

  27. Peng KC, Chen T, Sadovnik A, Gallagher AC (2015) A mixed bag of emotions: model, predict, and transfer emotion distributions. In: CVPR

  28. Poria S, Cambria E, Howard N, Huang GB, Hussain A (2016) Fusing audio, visual and textual clues for sentiment analysis from multimodal content. Neurocomputing 174:50–59

    Article  Google Scholar 

  29. Rao T, Xu M, Liu H, Wang J, Burnett I (2016) Multi-scale blocks based image emotion classification using multiple instance learning. In: ICIP

  30. Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS

  31. Sartori A, Culibrk D, Yan Y, Sebe N (2015) Who’s afraid of Itten: Using the art theory of color combination to analyze emotions in abstract paintings. In: ACM MM

  32. Shepstone SE, Tan ZH, Jensen SH (2014) Using audio-derived affective offset to enhance TV recommendation. IEEE Trans Multimed 16(7):1999–2010

    Article  Google Scholar 

  33. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. Comput Sci. arXiv:1409.1556

  34. Soleymani M, Larson M, Pun T, Hanjalic A (2014) Corpus development for affective video indexing. IEEE Trans Multimed 16(4):1075–1089

    Article  Google Scholar 

  35. Solli M, Lenz R (2009) Color based bags-of-emotions. In: CAIP

  36. Song K, Yao T, Ling Q, Mei T (2018) Boosting image sentiment analysis with visual attention. Neurocomputing 312:218–228

    Article  Google Scholar 

  37. Sun X, Li C, Ren F (2016) Sentiment analysis for chinese microblog based on deep neural networks with convolutional extension features. Neurocomputing 210:227–236

    Article  Google Scholar 

  38. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: CVPR

  39. Tkalcic M, Odic A, Kosir A, Tasic J (2013) Affective labeling in a content-based recommender system for images. IEEE Trans Multimed 15(2):391–400

    Article  Google Scholar 

  40. Wang W, He Q (2008) A survey on emotional semantic image retrieval. In: ICIP

  41. Wei-ning W, Ying-lin Y, Jian-chao Z (2004) Image emotional classification: static vs. dynamic. In: SMC

  42. Xu M, Jin JS, Luo S, Duan L (2008) Hierarchical movie affective content analysis based on arousal and valence features. In: ACM MM

  43. Yadati K, Katti H, Kankanhalli M (2014) CAVVA: computational affective video-in-video advertising. IEEE Trans Multimed 16(1):15–23

    Article  Google Scholar 

  44. Yanulevskaya V, Van Gemert J, Roth K, Herbold AK, Sebe N, Geusebroek JM (2008) Emotional valence categorization using holistic image features. In: ICIP

  45. Yanulevskaya V, Uijlings J, Bruni E, Sartori A, Zamboni E, Bacci F, Melcher D, Sebe N (2012) In the eye of the beholder: employing statistical analysis and eye tracking for analyzing abstract paintings. In: ACM MM

  46. You Q, Luo J, Jin H, Yang J (2016) Building a large scale dataset for image emotion recognition: the fine print and the benchmark. In: AAAI

  47. Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: ECCV

  48. Zhao S, Gao Y, Jiang X, Yao H, Chua TS, Sun X (2014) Exploring principles-of-art features for image emotion recognition. In: ACM MM

  49. Zhao S, Yao H, Gao Y, Ji R, Ding G (2017) Continuous probability distribution prediction of image emotions via multitask shared sparse regression. IEEE Trans Multimed 19(3):632–645

    Article  Google Scholar 

  50. Zhao S, Ding G, Gao Y, Zhao X, Tang Y, Han J, Yao H, Huang Q (2018) Discrete probability distribution prediction of image emotions with shared sparse learning. IEEE Trans Affect Comput. https://doi.org/10.1109/TAFFC.2018.2818685

  51. Zhao S, Yao H, Gao Y, Ding G, Chua TS (2018) Predicting personalized image emotion perceptions in social networks. IEEE Trans Affect Comput 9(4):526–540

    Article  Google Scholar 

  52. Zhou B, Lapedriza A, Xiao J, Torralba A, Oliva A (2014) Learning deep features for scene recognition using places database. In: NIPS

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, T., Li, X. & Xu, M. Learning Multi-level Deep Representations for Image Emotion Classification. Neural Process Lett 51, 2043–2061 (2020). https://doi.org/10.1007/s11063-019-10033-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-019-10033-9

Keywords

Navigation