[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Multi-Delay-Dependent Exponential Synchronization for Neutral-Type Stochastic Complex Networks with Markovian Jump Parameters via Adaptive Control

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Adaptive synchronization control is investigated for neutral-type complex networks with multi-delayed. Utilizing the M-matrix technique, distinct from the linear matrix inequalities technique, the sufficient conditions of synchronization are obtained for stochastic neutral-type complex networks and some corresponding parameters update laws are also got. Finally, the effectiveness of obtained results are showed by a simulation example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Chen Y, Fei S, Li Y (2015) Stabilization of neutral time-delay systems with actuator saturation via auxiliary time-delay feedback. Automatica 52:242–247

    Article  MathSciNet  MATH  Google Scholar 

  2. Dai A, Zhou W, Xu Y, Xiao C (2016) Adaptive exponential synchronization in mean square for Markovian jumping neutral-type coupled neural networks with time-varying delays by pinning control. Neurocomputing 173:809–818

    Article  Google Scholar 

  3. Delice II, Sipahi R (2012) Delay-independent stability test for systems with multiple time-delays. IEEE Trans Autom Control 57(4):963–972

    Article  MathSciNet  MATH  Google Scholar 

  4. Greenhalgh D, Rana S, Samanta S, Sardar T, Bhattacharya S, Chattopadhyay J (2015) Awareness programs control infectious disease-Multiple delay induced mathematical model. Appl Math Comput 251:539–563

    MathSciNet  MATH  Google Scholar 

  5. Hou L, Cheng J, Wang H (2016) Finite-time stochastic boundedness of discrete-time Markovian jump neural networks with boundary transition probabilities and randomly varying nonlinearities. Neurocomputing 174:773–779

    Article  Google Scholar 

  6. Huo S, Chen M, Shen H (2017) Non-fragile mixed \({H}_\infty \) and passive asynchronous state estimation for Markov jump neural networks with randomly occurring uncertainties and sensor nonlinearity. Neurocomputing 227:46–53

    Article  Google Scholar 

  7. Jia Y (2000) Robust control with decoupling performance for steering and traction of 4WS vehicles under velocity-varying motion. IEEE Trans Control Syst Technol 8(3):554–569

    Article  Google Scholar 

  8. Jia Y (2003) Alternative proofs for improved LMI representations for the analysis and the design of continuous-time systems with polytopic type uncertainty: a predictive approach. IEEE Trans Autom Control 48(8):1413–1416

    Article  MathSciNet  MATH  Google Scholar 

  9. Li F, Shi P, Wu L, Zhang X (2014) Fuzzy-model-based \(D\)-stability and nonfragile control for discrete-time descriptor systems with multiple delays. IEEE Trans Fuzzy Syst 22(4):1019–1025

    Article  Google Scholar 

  10. Li XJ, Yang GH (2017) Graph theory-based pinning synchronization of stochastic complex dynamical networks. IEEE Trans Neural Netw Learn Syst 28(2):427–437

    Article  MathSciNet  Google Scholar 

  11. Li Y (2017) Impulsive synchronization of stochastic neural networks via controlling partial states. Neural Process Lett 46(1):59–69

    Article  Google Scholar 

  12. Liu M, Zhang S, Fan Z, Zheng S, Sheng W (2013) Exponential \(H_\infty \) synchronization and state estimation for chaotic systems via a unified model. IEEE Trans Neural Netw Learn Syst 24(7):1114–1126

    Article  Google Scholar 

  13. Liu T, Zhao J, Hill DJ (2010a) Exponential synchronization of complex delayed dynamical networks with switching topology. IEEE Trans Circuits Syst I Regul Papers 57(11):2967–2980

    Article  MathSciNet  Google Scholar 

  14. Liu Z, Zhang H, Zhang Q (2010b) Novel stability analysis for recurrent neural networks with multiple delays via line integral-type LK functional. IEEE Trans Neural Netw 21(11):1710–1718

    Article  Google Scholar 

  15. Lu J, Ding C, Lou J, Cao J (2015) Outer synchronization of partially coupled dynamical networks via pinning impulsive controllers. J Frankl Inst 352(11):5024–5041

    Article  MathSciNet  MATH  Google Scholar 

  16. Mao X, Yuan C (2006) Stochastic differential equations with Markovian switching. Imperial College Press, London

    Book  MATH  Google Scholar 

  17. Mazenc F (2015) Stability analysis of time-varying neutral time-delay systems. IEEE Trans Autom Control 60(2):540–546

    Article  MathSciNet  MATH  Google Scholar 

  18. Mei J, Jiang M, Wang X, Han J, Wang S (2014) Finite-time synchronization of drive-response systems via periodically intermittent adaptive control. J Frankl Inst 351(5):2691–2710

    Article  MathSciNet  MATH  Google Scholar 

  19. Shi D, Chen T, Darouach M (2016) Event-based state estimation of linear dynamic systems with unknown exogenous inputs. Automatica 69:275–288

    Article  MathSciNet  MATH  Google Scholar 

  20. Shi P, Li F, Wu L, Lim CC (2017) Neural network-based passive filtering for delayed neutral-type semi-Markovian jump systems. IEEE Trans Neural Netw Learn Syst 28(9):2101–2114

    MathSciNet  Google Scholar 

  21. Tong D, Zhou W, Wang H (2014) Exponential state estimation for stochastic complex dynamical networks with multi-delayed base on adaptive control. Int J Control Autom Syst 12(5):963–968

    Article  Google Scholar 

  22. Tong D, Zhou W, Zhou X, Yang J, Zhang L, Xu Y (2015) Exponential synchronization for stochastic neural networks with multi-delayed and Markovian switching via adaptive feedback control. Commun Nonlinear Sci Numer Simul 29:359–371

    Article  MathSciNet  Google Scholar 

  23. Tong D, Zhang L, Zhou W, Zhou J, Xu Y (2016) Asymptotical synchronization for delayed stochastic neural networks with uncertainty via adaptive control. Int J Control Autom Syst 14(3):706–712

    Article  Google Scholar 

  24. Tong D, Rao P, Chen Q, Ogorzalek MJ, Li X (2018) Exponential synchronization and phase locking of a multilayer Kuramoto-oscillator system with a pacemaker. Neurocomputing 308:129–137

    Article  Google Scholar 

  25. Wang J, Zhang H, Wang Z, Liang H (2015) Local stochastic synchronization for Markovian neutral-type complex networks with partial information on transition probabilities. Neurocomputing 167:474–487

    Article  Google Scholar 

  26. Wang Y, Lu J, Lou J, Ding C, Alsaadi FE, Hayat T (2017) Synchronization of heterogeneous partially coupled networks with heterogeneous impulses. Neural Process Lett. https://doi.org/10.1007/s11063-017-9735-y

    Google Scholar 

  27. Xie L, Shieh L, Pan F, Tsai J, Canelon J (2014) Design of decoupling and tracking controllers for continuous-time transfer function matrices with multiple time delays. J Process Control 24(1):152–170

    Article  Google Scholar 

  28. Xu Y, Yang H, Tong D, Wang Y (2013) Adaptive exponential synchronization in \(p\text{ th }\) moment for stochastic time varying multi-delayed complex networks. Nonlinear Dyn 73(3):1423–1431

    Article  MATH  Google Scholar 

  29. Yang X, Lu J (2016) Finite-time synchronization of coupled networks with Markovian topology and impulsive effects. IEEE Trans Autom Control 61(8):2256–2261

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang X, Cao J, Lu J (2012) Synchronization of Markovian coupled neural networks with nonidentical node-delays and random coupling strengths. IEEE Trans Neural Netw Learn Syst 23(1):60–71

    Article  Google Scholar 

  31. Yang X, Cao J, Lu J (2013) Synchronization of randomly coupled neural networks with Markovian jumping and time-delay. IEEE Trans Circuits Syst I Regul Papers 60(2):363–376

    Article  MathSciNet  Google Scholar 

  32. Yang X, Feng Z, Feng J, Cao J (2017a) Synchronization of discrete-time neural networks with delays and Markov jump topologies based on tracker information. Neural Netw 85:157–164

    Article  Google Scholar 

  33. Yang X, Xu C, Feng J, Lu J (2017b) General synchronization criteria for nonlinear Markovian systems with random delays. J Frankl Inst 355:1394–1410

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang W, Yang X, Xu C, Feng J, Li C (2017) Finite-time synchronization of discontinuous neural networks with delays and mismatched parameters. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS20172740431

    Google Scholar 

  35. Zhang W, Li C, Huang T, Huang J (2018) Fixed-time synchronization of complex networks with nonidentical nodes and stochastic noise perturbations. Phys A Stat Mech Appl 492:1531–1542

    Article  MathSciNet  Google Scholar 

  36. Zhang Y, Xu S, Chu Y, Lu J (2010) Robust global synchronization of complex networks with neutral-type delayed nodes. Appl Math Comput 216(3):768–778

    MathSciNet  MATH  Google Scholar 

  37. Zhou J, Ding X, Zhou L, Zhou W, Yang J, Tong D (2016a) Almost sure adaptive asymptotically synchronization for neutral-type multi-slave neural networks with Markovian jumping parameters and stochastic perturbation. Neurocomputing 214:44–52

    Article  Google Scholar 

  38. Zhou L, Wang Z, Hu X, Chu B, Zhou W (2015) Adaptive almost sure asymptotically stability for neutral-type neural networks with stochastic perturbation and Markovian switching. Neurocomputing 156:151–156

    Article  Google Scholar 

  39. Zhou W, Zhu Q, Shi P, Su H, Fang J, Zhou L (2014) Adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching parameters. IEEE Trans Cybern 44(12):2848–2860

    Article  Google Scholar 

  40. Zhou W, Yang J, Zhou L, Tong D (2016b) Stability and synchronization control of stochastic neural networks. Springer, Berlin

    Book  MATH  Google Scholar 

  41. Zhu Q, Zhou W, Zhou L, Wu M, Tong D (2014) Mode-dependent projective synchronization for neutral-type neural networks with distributed time-delays. Neurocomputing 140:97–103

    Article  Google Scholar 

  42. Zou L, Wang Z, Gao H, Liu X (2015) Event-triggered state estimation for complex networks with mixed time delays via sampled data information: the continuous-time case. IEEE Trans Cybern 45(12):2804–2815

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongbing Tong, Qiaoyu Chen or Wuneng Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by National Natural Science Foundation of China (61673257; 11501367; 61573095; 61673221), the China Postdoctoral Science Foundation (2015M581528), the Talent Program of Shanghai University of Engineering Science (nhrc-2015-18)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, D., Chen, Q., Zhou, W. et al. Multi-Delay-Dependent Exponential Synchronization for Neutral-Type Stochastic Complex Networks with Markovian Jump Parameters via Adaptive Control. Neural Process Lett 49, 1611–1628 (2019). https://doi.org/10.1007/s11063-018-9891-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-018-9891-8

Keywords

Navigation