[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

\({\varvec{p}}\)th Moment Exponential Stability of Hybrid Delayed Reaction–Diffusion Cohen–Grossberg Neural Networks

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper, we propose hybrid reaction–diffusion Cohen–Grossberg neural networks (RDCGNNs) with variable coefficients and mixed time delays. By using the Lyapunov–Krasovkii functional approach, stochastic analysis technique and Hardy inequality, some novel sufficient conditions are derived to ensure the pth moment exponential stability of hybrid RDCGNNs with mixed time delays. The obtained sufficient conditions are relevant to the diffusion terms. The results of this paper are novel and improve some of the previously known results. Finally, two numerical examples are provided to verify the usefulness of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Cohen M, Grossberg S (1983) Absolute stability and global pattern formation and parallel memory storage by competitive neural networks. IEEE Trans Syst Man Cybern 13:815–826

    Article  MathSciNet  MATH  Google Scholar 

  2. Cao J, Wang J (2005) Global exponential stability and periodicity of recurrent neural networks with time delays. IEEE Trans Circuit Syst I 52:920–931

    Article  MathSciNet  Google Scholar 

  3. Shi Y, Zhu P (2014) Asymptotic stability analysis of stochastic reaction-diffusion Cohen–Grossberg neural networks with mixed time delays. Appl Math Comput 242(1):159–167

    MathSciNet  MATH  Google Scholar 

  4. Zhao H, Yuan J, Zhang X (2015) Stability and bifurcation analysis of reaction-diffusion neural networks with delays. Neurocomputing 147(5):280–290

    Google Scholar 

  5. Arik S, Orman Z (2005) Global stability analysis of Cohen–Grossberg neural networks with time-varying delays. Phys Lett A 341:410–421

    Article  MATH  Google Scholar 

  6. Huang C, Cao J (2011) Convergence dynamics of stochastic Cohen–Grossberg neural networks with unbounded distributed delays. IEEE Trans Neural Netw 22:561–572

    Article  Google Scholar 

  7. Kwon OM, Park JuH, Lee SM, Cha EJ (2013) Analysis on delay-dependent stability for neural networks with time-varying delays. Neurocomputing 103:114–120

    Article  Google Scholar 

  8. Fang M, Park JuH (2013) Non-fragile synchronization of neural networks with time-varying delay and randomly occurring controller gain fluctuation. Appl Math Comput 219:8009–8017

    MathSciNet  MATH  Google Scholar 

  9. Rakkiyappan R, Balasubramaniam P (2008) Delay-dependent asymptotic stability for stochastic delayed recurrent neural networks with time varying delays. Appl Math Comput 198:526–533

    MathSciNet  MATH  Google Scholar 

  10. Hiratsuka M, Aoki T, Higuchi T (1999) Enzyme transistor circuits for reaction-diffusion computing. IEEE Trans Circuits Syst I 46(2):294303

    Article  Google Scholar 

  11. Hiratsuka M, Aoki T, Higuchi T (1999) Pattern formation in reaction-diffusion enzyme transistor circuits. IEICE Trans Fundam E82–A(9):1809–1817

    Google Scholar 

  12. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B237:31-12

  13. Murray JD (1993) Mathematical biology. Springer, Berlin

    Book  MATH  Google Scholar 

  14. Steinbock O, Toth A, Showalter K (1995) Navigating complex labyrinths: optimal paths from chemical waves. Science 267:868–871

    Article  Google Scholar 

  15. Kuhnert L, Agladze KI, Krinsky VI (1989) Image processing using light-sensitive chemical waves. Nature 337:244–247

    Article  Google Scholar 

  16. Krinsky VI (1984) Autowaves: results, problems, outlooks, in self-organization: autowaves and structures far from equilibrium. Springer, Berlin

    Book  MATH  Google Scholar 

  17. Chua LO, Roska T (1993) The CNN paradigm. IEEE Trans Circuits Syst I, Fundam Theory Appl 40:147–156

    Article  MATH  Google Scholar 

  18. Chua LO, Yang L (1988) Cellular neural networks: theory. IEEE Trans Circuits Syst I 35:1257–1272

    Article  MathSciNet  MATH  Google Scholar 

  19. Chua LO, Hasler M, Moschytz GS, Neirynck J (1995) Autonomous cellular neural networks: a unified paradigm for pattern formation and active wave propagation. IEEE Trans Circuits Syst I 42:559–577

    Article  MathSciNet  Google Scholar 

  20. Roska T, Chua LO, Wolf D, Kozek T, Tezlaff R, Puffer F (1995) Simulating nonlinear waves and partial differential equations via CNN-Part I: basic techniques. IEEE Trans Circuits Syst I 42:807–815

    Article  Google Scholar 

  21. Li D, He D, Xu D (2012) Mean square exponential stability of impulsive stochastic reaction-diffusion Cohen–Grossberg neural networks with delays. Math Comput Simul 82:1531–1543

    Article  MathSciNet  MATH  Google Scholar 

  22. Lu JG (2007) Robust global exponential stability for interval reaction-diffusion Hopfield neural networks with distributed delays. IEEE Trans Circuits Syst II 54:1115–1119

    Article  Google Scholar 

  23. Wang Z, Zhang H, Li P (2010) An LMI approach to stability analysis of reaction-diffusion Cohen–Grossberg neural networks concerning dirichlet boundary conditions and distributed delays. IEEE Trans Syst Man Cybern B 40:1596–1606

    Article  Google Scholar 

  24. Li J, Zhang W, Chen M (2013) Synchronization of delayed reaction-diffusion neural networks via an adaptive learning control approach. Comput Math Appl 65:1775–1785

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang W, Xing K, Li J, Chen M (2015) Adaptive synchronization of delayed reaction-diffusion FCNNs via learning control approach. J Intell Fuzzy Syst 28(1):141–150

    MathSciNet  MATH  Google Scholar 

  26. Wang Z, Zhang H (2010) Global Asymptotic Stability of Reaction- Diffusion Cohen-Grossberg Neural Network with Continuously Distributed Delays. IEEE Trans Neural Netw 21:39–49

    Article  Google Scholar 

  27. Lakshmikantham V, Bainov DD, Simeonov PS (1989) Theory of impulsive differential equations. World Scientific, Singapore

    Book  MATH  Google Scholar 

  28. Pan J, Liu X, Zhong S (2010) Stability criteria for impulsive reaction-diffusion Cohen–Grossberg neural networks with time-varying delays. Math Comput Model 51:1037–1050

    Article  MathSciNet  MATH  Google Scholar 

  29. Pan J, Zhong S (2010) Dynamical behaviors of impulsive reaction-diffusion Cohen–Grossberg neural network with delays. Neurocomputing 73:1344–1351

    Article  MATH  Google Scholar 

  30. Li K, Song Q (2008) Exponential stability of impulsive Cohen–Grossberg neural networks with time-varying delays and reaction-diffusion term. Neurocomputing 72(1–3):231–240

    Article  Google Scholar 

  31. Li Z, Li KL (2009) Stability analysis of impulsive Cohen–Grossberg neural networks with distributed delays and reaction-diffusion terms. Appl Math Model 33:1337–1348

    Article  MathSciNet  MATH  Google Scholar 

  32. Qiu J (2007) Exponential stability of impulsive neural networks with time-varying delays and reaction-diffusion term. Neurocomputing 70:1102–1108

    Article  Google Scholar 

  33. Zhang X, Wu SL, Li KL (2011) Delay-dependent exponential stability for impulsive Cohen-Grossberg neural networks with time-varying delays and reaction-diffusion terms. Commun Nonlinear Sci Numer Simul 16:1524–1532

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang J, Wu H, Guo L (2013) Stability analysis of reaction-diffusion Cohen–Grossberg neural networks under impulsive control. Neurocomputing 106(15):21–30

    Article  Google Scholar 

  35. Hu C, Jiang H, Teng Z (2010) Impulsive control and synchronization for delayed neural networks with reaction-diffusion terms. IEEE Trans Neural Netw 21:67–81

    Article  Google Scholar 

  36. Haykin S (1994) Neural networks. Prentice-Hall, Upper Saddle River

    MATH  Google Scholar 

  37. Wan L, Zhou Q (2008) Exponential stability of stochastic reaction-diffusion Cohen–Grossberg neural networks with delays. Appl Math Comput 206:818–824

    MathSciNet  MATH  Google Scholar 

  38. Lv Y, Lv W, Sun JH (2008) Convergence dynamics of stochastic reaction-diffusion recurrent neural networks with continuously distributed delays. Nonlinear Anal Real World Appl 9:1590–1606

    Article  MathSciNet  MATH  Google Scholar 

  39. Xu X, Zhang J, Zhang W (2011) Mean square exponential stability of stochastic neural networks with reaction-diffusion terms and delay. Appl Math Lett 24:5–11

    Article  MathSciNet  MATH  Google Scholar 

  40. Balasubramaniam P, Vidhya C (2010) Global asymptotic stability of stochastic BAM neural networks with distributed delays and reaction-diffusion terms. J Comput Appl Math 234:3458–3466

    Article  MathSciNet  MATH  Google Scholar 

  41. Li X (2010) Existence and global exponential stability of periodic solution for delayed neural networks with impulsive and stochastic effects. Neurocomputing 73:749–758

    Article  Google Scholar 

  42. Yang G, Kao Y, Li W, Sun X (2013) Exponential stability of impulsive stochastic fuzzy cellular neural networks with mixed delays and reaction-diffusion terms. Neural Comput Appl 23:1109–1121

    Article  Google Scholar 

  43. Li XD (2009) Existence and global exponential stability of periodic solution for impulsive Cohen–Grossberg-type BAM neural networks with continuously distributed delays. Appl Math Comput 215:292–307

    MathSciNet  MATH  Google Scholar 

  44. Hardy GH, Littlewood JE, Polya G (1952) Inequalities, 2nd edn. Cambridge Univ. Press, London

    MATH  Google Scholar 

  45. Mao X (1997) Stochastic differential equations and applications, 1st edn. Horwood, Chichester

    MATH  Google Scholar 

  46. Omatu S, Seinfeld JH (1989) Distributed parameter systems. Clarendon-Press, Oxford

    MATH  Google Scholar 

  47. Taniguchi Takeshi (1998) Almost sure exponential stability for stochastic partial functional differential equations. Stoch Anal Appl 16(5):965–975

    Article  MathSciNet  MATH  Google Scholar 

  48. Li X, Fu X, Balasubramaniam P, Rakkiyappan R (2010) Existence, uniqueness and stability analysis of recurrent neural networks with time delay in the leakage term under impulsive perturbations. Nonlinear Anal Real World Appl 11(5):4092–4108

    Article  MathSciNet  MATH  Google Scholar 

  49. Cronin-Scanlon J (1964) Fixed points and topological degree in nonlinear analysis. In: Math. Surveys, vol. 11, Amer. Math. Soc., Providence

  50. Zhao H, Wang K (2006) Dynamical behaviors of Cohen-Grossberg neural networks with delays and reaction-diffusion terms. Neurocomputing 70(1):536–543

    Article  Google Scholar 

  51. Huang CX, Cao JD (2010) On pth moment exponential stability of stochastic Cohen–Grossberg neural networks with time-varying delays. Neurocomputing 73:986–990

    Article  Google Scholar 

  52. Zhao H, Ding N (2006) Dynamic analysis of stochastic Cohen–Grossberg neural networks with time delays. Appl Math Comput 183(1):464–470

    MathSciNet  MATH  Google Scholar 

  53. Lu W, Chen T (2007) \(R_n^+ \)-global stability of a Cohen–Grossberg neural network with nonnegative equilibria. Neural Netw 20:714–722

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China under Grants No. 60974139, China Postdoctoral Science Foundation Funded Project (2013M540754), Natural Science Foundation of Shaanxi Province under Grant No. 2015JM1015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiyuan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Li, J., Ding, C. et al. \({\varvec{p}}\)th Moment Exponential Stability of Hybrid Delayed Reaction–Diffusion Cohen–Grossberg Neural Networks. Neural Process Lett 46, 83–111 (2017). https://doi.org/10.1007/s11063-016-9572-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-016-9572-4

Keywords

Navigation