[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Knockdown of cyclin D1 inhibits proliferation, induces apoptosis, and attenuates the invasive capacity of human glioblastoma cells

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Elevated cyclin D1 (CCND1) in human glioblastoma correlates with poor clinical prognosis. In this study, the human glioblastoma cell lines SHG-44 and U251 were stably transfected with short hairpin RNA (shRNA) targeting cyclin D1 or with ectogenic cyclin D1 by lentivirus-mediated transfection. Glioblastoma cells overexpressing or underexpressing cyclin D1 were then examined by in vitro growth assays, apoptosis assays, cell cycle analysis, and invasion assays. Cyclin D1 knockdown in SHG-44 cells inhibited cell proliferation, induced apoptosis, and attenuated migration across Matrigel, a model of invasive capacity. Western blot analysis and quantitative reverse-transcription polymerase chain reaction (RT-PCR) revealed that cells underexpressing CCND1 exhibited decreased multidrug resistance protein 1 (MDR1) and B-cell lymphoma-2 (Bcl-2) expression, but enhanced apoptosis effector caspase-3 expression. In contrast, cyclin D1 overexpression promoted cell proliferation, attenuated apoptosis, and enhanced invasive capacity. Furthermore, cyclin D1 overexpression was associated with increased expression of MDR1 and Bcl-2, and decreased caspase-3 expression. Results using the U251 cell line confirmed the effects of CCND1-targeted shRNA and lentivirus-mediated overexpression on proliferation and apoptosis of glioblastoma cells. Overexpression of cyclin D1 enhanced the proliferation and invasive potential of human glioblastoma cells, while reducing apoptosis. The ability to suppress the malignant phenotype by downregulating cyclin D1 expression may provide a new gene therapy approach for patients with malignant glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pines J (1994) Protein kinases and cell cycle control. Semin Cell Biol 5:399–408

    Google Scholar 

  2. Tashiro E, Tsuchiya A, Imoto M (2007) Functions of cyclin D1 as an oncogene and regulation of cyclin D1 expression. Cancer Sci 98:629–635

    Google Scholar 

  3. Grana X, Reddy EP (1995) Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 11:211–219

    Google Scholar 

  4. Collecchi P, Santoni T, Gnesi E, Giuseppe Naccarato A, Passoni A, Rocchetta M, Danesi R, Bevilacqua G (2000) Cyclins of phases G1, S and G2/M are overexpressed in aneuploid mammary carcinomas. Cytometry 42:254–260

    Google Scholar 

  5. Draetta GF (1994) Mammalian G1 cyclins. Curr Opin Cell Biol 6:842–846

    Google Scholar 

  6. Sherr CJ (1994) G1 phase progression: cycling on cue. Cell 79:551–555

    Google Scholar 

  7. Pardee AB (1989) G1 events and regulation of cell proliferation. Science 246:603–608

    Google Scholar 

  8. Bernards R (1999) CDK-independent activities of D type cyclins. Biochim Biophys Acta 1424:M17–M22

    Google Scholar 

  9. Hui AB, Or YY, Takano H, Tsang RK, To KF, Guan XY, Sham JS, Hung KW, Lam CN, van Hasselt CA, Kuo WL, Gray JW, Huang DP, Lo KW (2005) Array-based comparative genomic hybridization analysis identified cyclin D1 as a target oncogene at 11q13.3 in nasopharyngeal carcinoma. Cancer Res 65:8125–8133

    Google Scholar 

  10. Ormandy CJ, Musgrove EA, Hui R, Daly RJ, Sutherland RL (2003) Cyclin D1, EMS1 and 11q13 amplification in breast cancer. Breast Cancer Res Treat 78:323–335

    Google Scholar 

  11. Nishida N, Fukuda Y, Komeda T, Kita R, Sando T, Furukawa M, Amenomori M, Shibagaki I, Nakao K, Ikenaga M, Ishizaki K (1994) Amplification and overexpression of the cyclin D1 gene in aggressive human hepatocellular carcinoma. Cancer Res 54:3107–3110

    Google Scholar 

  12. Buschges R, Weber RG, Actor B, Lichter P, Collins VP, Reifenberger G (1999) Amplification and expression of cyclin D genes (CCND1, CCND2 and CCND3) in human malignant gliomas. Brain Pathol 9:435–442 discussion 432–433

    Google Scholar 

  13. Hunter T, Pines J (1994) Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell 79:573–582

    Google Scholar 

  14. Umekita Y, Ohi Y, Sagara Y, Yoshida H (2002) Overexpression of cyclin D1 predicts for poor prognosis in estrogen receptor-negative breast cancer patients. Int J Cancer 98:415–418

    Google Scholar 

  15. Liu B, Ren Z, Shi Y, Guan C, Pan Z, Zong Z (2008) Activation of signal transducers and activators of transcription 3 and overexpression of its target gene CyclinD1 in laryngeal carcinomas. Laryngoscope 118:1976–1980

    Google Scholar 

  16. Toyoda H, Nakamura T, Shinoda M, Suzuki T, Hatooka S, Kobayashi S, Ohashi K, Seto M, Shiku H, Nakamura S (2000) Cyclin D1 expression is useful as a prognostic indicator for advanced esophageal carcinomas, but not for superficial tumors. Dig Dis Sci 45:864–869

    Google Scholar 

  17. Gao P, Zhou GY, Liu Y, Li JS, Zhen JH, Yuan YP (2004) Alteration of cyclin D1 in gastric carcinoma and its clinicopathologic significance. World J Gastroenterol 10:2936–2939

    Google Scholar 

  18. Bahnassy AA, Zekri AR, El-Houssini S, El-Shehaby AM, Mahmoud MR, Abdallah S, El-Serafi M (1997) Cyclin A and cyclin D1 as significant prognostic markers in colorectal cancer patients. BMC Gastroenterol 4:22

    Google Scholar 

  19. Gansauge S, Gansauge F, Ramadani M, Stobbe H, Rau B, Harada N, Beger HG (1997) Overexpression of cyclin D1 in human pancreatic carcinoma is associated with poor prognosis. Cancer Res 57:1634–1637

    Google Scholar 

  20. Sallinen SL, Sallinen PK, Kononen JT, Syrjakoski KM, Nupponen NN, Rantala IS, Helen PT, Helin HJ, Haapasalo HK (1999) Cyclin D1 expression in astrocytomas is associated with cell proliferation activity and patient prognosis. J Pathol 188:289–293

    Google Scholar 

  21. Malumbres M, Barbacid M (2006) Is Cyclin D1-CDK4 kinase a bona fide cancer target? Cancer Cell 9:2–4

    Google Scholar 

  22. Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV (1994) Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369:669–671

    Google Scholar 

  23. Yu Q, Geng Y, Sicinski P (2001) Specific protection against breast cancers by cyclin D1 ablation. Nature 411:1017–1021

    Google Scholar 

  24. Zhou P, Jiang W, Zhang YJ, Kahn SM, Schieren I, Santella RM, Weinstein IB (1995) Antisense to cyclin D1 inhibits growth and reverses the transformed phenotype of human esophageal cancer cells. Oncogene 11:571–580

    Google Scholar 

  25. Arber N, Doki Y, Han EK, Sgambato A, Zhou P, Kim NH, Delohery T, Klein MG, Holt PR, Weinstein IB (1997) Antisense to cyclin D1 inhibits the growth and tumorigenicity of human colon cancer cells. Cancer Res 57:1569–1574

    Google Scholar 

  26. Sauter ER, Nesbit M, Litwin S, Klein-Szanto AJ, Cheffetz S, Herlyn M (1999) Antisense cyclin D1 induces apoptosis and tumor shrinkage in human squamous carcinomas. Cancer Res 59:4876–4881

    Google Scholar 

  27. Carpentier AF (2005) Neuro–oncology: the growing role of chemotherapy in glioma. Lancet Neurol 4:4–5

    Google Scholar 

  28. Prados MD, Levin V (2000) Biology and treatment of malignant glioma. Semin Oncol 27:1–10

    Google Scholar 

  29. Cavalla P, Dutto A, Piva R, Richiardi P, Grosso R, Schiffer D (1998) Cyclin D1 expression in gliomas. Acta Neuropathol 95:131–135

    Google Scholar 

  30. Pscherer A, Schliwka J, Wildenberger K, Mincheva A, Schwaenen C, Dohner H, Stilgenbauer S, Lichter P (2006) Antagonizing inactivated tumor suppressor genes and activated oncogenes by a versatile transgenesis system: application in mantle cell lymphoma. FASEB J 20:1188–1190

    Google Scholar 

  31. Chakrabarty A, Bridges LR, Gray S (1996) Cyclin D1 in astrocytic tumours: an immunohistochemical study. Neuropathol Appl Neurobiol 22:311–316

    Google Scholar 

  32. Kornmann M, Arber N, Korc M (1998) Inhibition of basal and mitogen-stimulated pancreatic cancer cell growth by cyclin D1 antisense is associated with loss of tumorigenicity and potentiation of cytotoxicity to cisplatinum. J Clin Invest 101:344–352

    Google Scholar 

  33. Lampert K, Machein U, Machein MR, Conca W, Peter HH, Volk B (1998) Expression of matrix metalloproteinases and their tissue inhibitors in human brain tumors. Am J Pathol 153:429–437

    Google Scholar 

  34. Forsyth PA, Wong H, Laing TD, Rewcastle NB, Morris DG, Muzik H, Leco KJ, Johnston RN, Brasher PM, Sutherland G, Edwards DR (1999) Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer 79:1828–1835

    Google Scholar 

  35. Kargiotis O, Chetty C, Gondi CS, Tsung AJ, Dinh DH, Gujrati M, Lakka SS, Kyritsis AP, Rao JS (2008) Adenovirus-mediated transfer of siRNA against MMP-2 mRNA results in impaired invasion and tumor-induced angiogenesis, induces apoptosis in vitro and inhibits tumor growth in vivo in glioblastoma. Oncogene 27:4830–4840

    Google Scholar 

  36. Lakka SS, Gondi CS, Yanamandra N, Olivero WC, Dinh DH, Gujrati M, Rao JS (2004) Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene 23:4681–4689

    Google Scholar 

  37. Noel EE, Yeste-Velasco M, Mao X, Perry J, Kudahetti SC, Li NF, Sharp S, Chaplin T, Xue L, McIntyre A, Shan L, Powles T, Oliver RT, Young BD, Shipley J, Berney DM, Joel SP, Lu YJ (2010) The association of CCND1 overexpression and cisplatin resistance in testicular germ cell tumors and other cancers. Am J Pathol 176:2607–2615

    Google Scholar 

  38. Biliran H Jr, Wang Y, Banerjee S, Xu H, Heng H, Thakur A, Bollig A, Sarkar FH, Liao JD (2005) Overexpression of cyclin D1 promotes tumor cell growth and confers resistance to cisplatin-mediated apoptosis in an elastase-myc transgene-expressing pancreatic tumor cell line. Clin Cancer Res 11:6075–6086

    Google Scholar 

  39. Kornmann M, Danenberg KD, Arber N, Beger HG, Danenberg PV, Korc M (1999) Inhibition of cyclin D1 expression in human pancreatic cancer cells is associated with increased chemosensitivity and decreased expression of multiple chemoresistance genes. Cancer Res 59:3505–3511

    Google Scholar 

  40. Ochs K, Kaina B (2000) Apoptosis induced by DNA damage O6-methylguanine is Bcl-2 and caspase-9/3 regulated and Fas/caspase-8 independent. Cancer Res 60:5815–5824

    Google Scholar 

  41. Roos WP, Batista LF, Naumann SC, Wick W, Weller M, Menck CF, Kaina B (2007) Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene 26:186–197

    Google Scholar 

  42. Demeule M, Shedid D, Beaulieu E, Del Maestro RF, Moghrabi A, Ghosn PB, Moumdjian R, Berthelet F, Beliveau R (2001) Expression of multidrug-resistance P-glycoprotein (MDR1) in human brain tumors. Int J Cancer 93:62–66

    Google Scholar 

  43. Toth K, Vaughan MM, Peress NS, Slocum HK, Rustum YM (1996) MDR1 P-glycoprotein is expressed by endothelial cells of newly formed capillaries in human gliomas but is not expressed in the neovasculature of other primary tumors. Am J Pathol 149:853–858

    Google Scholar 

  44. Bronger H, Konig J, Kopplow K, Steiner HH, Ahmadi R, Herold-Mende C, Keppler D (2005) Nies AT ABCC drug efflux pumps and organic anion uptake transporters in human gliomas and the blood-tumor barrier. Cancer Res 65:11419–11428

    Google Scholar 

  45. Schaich M, Kestel L, Pfirrmann M, Robel K, Illmer T, Kramer M, Dill C, Ehninger G, Schackert G, Krex D (2009) A MDR1 (ABCB1) gene single nucleotide polymorphism predicts outcome of temozolomide treatment in glioblastoma patients. Ann Oncol 20:175–181

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiCheng Lu.

Additional information

JunYu Wang and Qi Wang are equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Wang, Q., Cui, Y. et al. Knockdown of cyclin D1 inhibits proliferation, induces apoptosis, and attenuates the invasive capacity of human glioblastoma cells. J Neurooncol 106, 473–484 (2012). https://doi.org/10.1007/s11060-011-0692-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-011-0692-4

Keywords

Navigation