[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

The nonsteroidal anti-inflammatory drug celecoxib suppresses the growth and induces apoptosis of human glioblastoma cells via the NF-κB pathway

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Gliomas are devastating primary tumors of the central nervous system and tend to recur even after standard therapy. Celecoxib, the selective COX-2 nonsteroidal anti-inflammatory drug, has anti-neoplastic activity against several malignancies. Accumulating evidence suggests that several COX-2-independent mechanisms may also be involved in the anti-tumor effects of celecoxib. Deregulation of the NF-κB signaling pathway contributes to enhanced glioma cell survival, proliferation, and chemoresistance. In this study, we examined the efficacy of celecoxib in suppressing the growth of glioblastoma cell lines. We observed that treatment with celecoxib significantly reduced the proliferation of a variety of GBM cell lines in a dose-dependent manner and also induced apoptosis, which was evident from enhanced caspase-3 and 8 activity, PARP cleavage, and TUNEL positive cells. Celecoxib treatment significantly down-regulated TNF-α induced NF-κB nuclear translocation, NF-κB DNA binding activity, and NF-κB-dependent reporter gene expression in U373 and T98G cells in a dose-dependent manner. Furthermore, celecoxib suppressed IκBα degradation and phosphorylation and reduced IKK activity in a dose-dependent manner. This study provides evidence that celecoxib suppresses the growth of GBM cell lines partly by inhibiting the NF-κB signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  2. Nupponen NN, Joensuu H (2006) Molecular pathology of gliomas. Curr Diagn Pathol 12:394–402

    Article  Google Scholar 

  3. Cavenee WK (1992) Accumulation of genetic defects during astrocytoma progression. Cancer 70(6 Suppl):1788–1793

    Article  PubMed  CAS  Google Scholar 

  4. Ohgaki H, Kleihues P (2009) Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Sci 100:2235–2241

    Article  PubMed  CAS  Google Scholar 

  5. Giese A, Westphal M (1996) Glioma invasion in the central nervous system. Neurosurgery 39:235–250

    Article  PubMed  CAS  Google Scholar 

  6. Jansen M, Witt Hamer PC, Witmer AN, Troost D, van Noorden CJ (2004) Current perspectives on antiangiogenesis strategies in the treatment of malignant gliomas. Brain Res Brain Res Rev 45:143–163

    Article  PubMed  CAS  Google Scholar 

  7. Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE (1998) Cyclooxygenase in biology and disease. FASEB J 12:1063–1073

    PubMed  CAS  Google Scholar 

  8. Thun MJ, Henley SJ, Patrono C (2002) Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst 94:252–266

    Article  PubMed  CAS  Google Scholar 

  9. Howe LR, Dannenberg AJ (2002) A role for cyclooxygenase-2 inhibitors in the prevention and treatment of cancer. Semin Oncol 29:111–119

    PubMed  CAS  Google Scholar 

  10. Everts B, Wahrborg P, Hedner T (2000) COX-2-specific inhibitors-the emergence of a new class of analgesic and anti-inflammatory drugs. Clin Rheumatol 19:331–343

    Article  PubMed  CAS  Google Scholar 

  11. Steinbach G, Lynch PM, Philips RK, Wallace MH, Hawk E, Gordon GB, Wakabayashi N, Saunders B, Shen Y, Fujimura I, Su LK, Levin B (2000) The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 342:1946–1952

    Article  PubMed  CAS  Google Scholar 

  12. Williams CS, Watson AJ, Sheng H, Helou R, Shao J, DuBois RN (2000) Celecoxib prevents tumor growth in vivo without toxicity to normal gut: lack of correlation between in vitro and in vivo models. Cancer Res 60:6045–6051

    PubMed  CAS  Google Scholar 

  13. Zweifel BS, Davis TW, Orenberg RL, Masferrer JL (2002) Direct evidence for a role of cyclooxygenase 2-derived prostaglandin E2 in human head and neck xenograft tumors. Cancer Res 62:6706–6711

    PubMed  CAS  Google Scholar 

  14. Arico S, Pattingre S, Bauvy C, Gane P, Barbat A, Codongo P, Ogier-Denis E (2002) Celecoxib induce apoptosis by inhibiting 3-phosphoinositide-dependent protein kinase-1 activity in the human colon cancer HT-29 cell line. J Biol Chem 277:27613–27621

    Article  PubMed  CAS  Google Scholar 

  15. Hsu AL, Ching TT, Wang DS, Song X, Rangnekar VM, Chen CS (2000) The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2. J Biol Chem 275:11397–11403

    Article  PubMed  CAS  Google Scholar 

  16. Kim KS, Yoon JH, Kim JK, Baek SJ, Eling TE, Lee WJ, Ryu JH, Lee JG, Lee JH, Yoo JB (2004) Cyclooxygenase inhibitors induce apoptosis in oral cavity cancer cells by increased expression of nonsteroidal anti-inflammatory drug-activated gene. Biochem Biophys Res Commun 325:1298–1303

    Article  PubMed  CAS  Google Scholar 

  17. Liu HF, Hsiao PW, Chao JL (2008) Celecoxib induces p53-PUMA pathway for apoptosis in human colorectal cancer cells. Chem Biol Interact 176:48–57

    Article  PubMed  CAS  Google Scholar 

  18. Kim SH, Song SH, Kim SG, Chun KS, Lim SY, Na HK, Kim JW, Surh YJ, Bang YJ, Song YS (2004) Celecoxib induces apoptosis in cervical cancer cells independent of cyclooxygenase using NF-kappaB as a possible target. J Cancer Res Clin Oncol 130:551–560

    Article  PubMed  CAS  Google Scholar 

  19. Gupta RA, Dubois RN (1998) Aspirin, NSAIDS, and colon cancer prevention: mechanisms? Gastroenterology 114:1095–1098

    Article  PubMed  CAS  Google Scholar 

  20. Tegeder I, Pfeilschifter J, Geisslinger G (2001) Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J 15:2057–2072

    Article  PubMed  CAS  Google Scholar 

  21. Smith ML, Hawcroft G, Hull MA (2000) The effect of non-steroidal anti-inflammatory drugs on human colorectal cancer cells: evidence of different mechanisms of action. Eur J Cancer 36:664–674

    Article  PubMed  CAS  Google Scholar 

  22. Waskewich C, Blumenthal RD, Li H, Stein R, Goldenberg DM, Burton J (2009) Celecoxib exhibits the greatest potency amongst cyclooxygenase (COX) inhibitors for growth inhibition of COX-2-negative hematopoietic and epithelial cell lines. Cancer Res 62:2029–2033

    Google Scholar 

  23. Grosch S, Tegeder I, Niederberger E, Brautigam L, Geisslinger G (2001) COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. FASEB J 15:2742–2744

    PubMed  CAS  Google Scholar 

  24. Maier TJ, Jansen A, Schmidt R, Geisslinger G, Grosch S (2005) Targeting the beta-catenin/APC pathway: a novel mechanism to explain the cyclooxygenase-2-independent anticarcinogenic effects of celecoxib in human colon carcinoma cells. FASEB J 19:1353–1355

    PubMed  CAS  Google Scholar 

  25. Shishodia S, Koul D, Aggarwal BB (2004) Cyclooxygenase (COX)-2 inhibitor celecoxib abrogates TNF-induced NF-kappa B activation through inhibition of activation of I kappa B kinase and Akt in human non-small cell lung carcinoma: correlation with suppression of COX-2 synthesis. J Immunol 173:2011–2022

    PubMed  CAS  Google Scholar 

  26. Cerchietti LC, Bonomi MR, Navigante AH, Castro MA, Cabalar ME, Roth BM (2005) Phase I/II study of selective cyclooxygenase-2 inhibitor celecoxib as a radiation sensitizer in patients with unresectable brain metastases. J Neurooncol 71:73–81

    Article  PubMed  CAS  Google Scholar 

  27. Tuettenberg J, Grobholz R, Korn T, Wenz F, Erber R, Vajkoczy P (2005) Continuous low-dose chemotherapy plus inhibition of cyclooxygenase-2 as an antiangiogenic therapy of glioblastoma multiforme. J Cancer Res Clin Oncol 131:31–40

    Article  PubMed  CAS  Google Scholar 

  28. Reardon DA, Quinn JA, Vredenburgh J, Rich JN, Gururangan S, Badruddoja M, Herndon JE 2nd, Dowell JM, Friedman AH, Friedman HS (2005) Phase II trial of irinotecan plus celecoxib in adults with recurrent malignant glioma. Cancer 103:329–338

    Article  PubMed  CAS  Google Scholar 

  29. Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18:621–663

    Article  PubMed  CAS  Google Scholar 

  30. Karin M, Cao Y, Greten FR, Li ZW (2002) NF-kappa B in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–310

    Article  PubMed  CAS  Google Scholar 

  31. Nishikori M (2005) Classical and alternative NF-κB activation pathways and their roles in lymphoid malignancies. J Clin Exp Hematopathol 45:15–24

    Article  Google Scholar 

  32. Ghosh S, Karin M (2002) Missing pieces in the NF-kappa B puzzle. Cell 109:S81–S96

    Article  PubMed  CAS  Google Scholar 

  33. Wang CY, Cusack JC Jr, Liu R, Baldwin AS Jr (1999) Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB. Nat Med 5:412–417

    Article  PubMed  Google Scholar 

  34. Nagai S, Washiyama K, Kurimoto M, Takaku A, Endo S, Kumanishi T (2002) Aberrant nuclear factor-kappaB activity and its participation in the growth of human malignant astrocytoma. J Neurosurg 96:909–917

    Article  PubMed  CAS  Google Scholar 

  35. Ansari SA, Safak M, Del Valle L, Enam S, Amini S, Khalili K (2001) Cell cycle regulation of NF-kappaB binding activity in cells from human glioblastomas. Exp Cell Res 265:221–233

    Article  PubMed  CAS  Google Scholar 

  36. Du L, Lyle CS, Obey TB, Gaarde WA, Muir JA, Bennett BL, Chambers TC (2004) Inhibition of cell proliferation and cell cycle progression by specific inhibition of basal JNK activity. J Biol Chem 279:11957–11966

    Article  PubMed  CAS  Google Scholar 

  37. Kesanakurti D, Sareddy GR, Babu PP, Kirti PB (2009) Mustard NPR1, a mammalian IkappaB homologue inhibits NF-kappaB activation in human GBM cell lines. Biochem Biophys Res Commun 390:427–433

    Article  PubMed  CAS  Google Scholar 

  38. King JG Jr, Khalili K (2001) Inhibition of human brain tumor cell growth by the anti-inflammatory drug flurbiprofen. Oncogene 20:6864–6870

    Article  PubMed  CAS  Google Scholar 

  39. Wang M, Yoshida D, Liu S, Teramoto A (2005) Inhibition of cell invasion by indomethacin on glioma cell lines: in vitro study. J Neurooncol 72:1–9

    Article  PubMed  CAS  Google Scholar 

  40. Grubbs CJ, Lubet RA, Koki AT, Leahy KM, Masferrer JL, Steele VE, Kelloff GJ, Hill DL, Seibert K (2000) Celecoxib inhibits N-butyl-N-(4-hydroxybutyl)-nitrosamine-induced urinary bladder cancers in male B6D2F1 mice and female Fischer-344 rats. Cancer Res 60:5599–5602

    PubMed  CAS  Google Scholar 

  41. Reddy BS, Hirose Y, Lubet R, Steele V, Kelloff G, Paulson S, Seibert K, Rao CV (2000) Chemoprevention of colon cancer by specific cyclooxygenase-2 inhibitor, celecoxib, administered during different stages of carcinogenesis. Cancer Res 60:293–297

    PubMed  CAS  Google Scholar 

  42. Grosch S, Maier TJ, Schiffmann S, Geisslinger G (2006) Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors. J Natl Cancer Inst 98:736–747

    Article  PubMed  Google Scholar 

  43. Cohen EG, Almahmeed T, Du B, Golijanin D, Boyle JO, Soslow RA, Subbaramaiah K, Dannenberg AJ (2003) Microsomal prostaglandin E synthase-1 is overexpressed in head and neck squamous cell carcinoma. Clin Cancer Res 9:3425–3430

    PubMed  CAS  Google Scholar 

  44. Crane CH, Mason K, Janjan NA, Milas L (2003) Initial experience combining cyclooxygenase-2 inhibition with chemoradiation for locally advanced pancreatic cancer. Am J Clin Oncol 26:S81–S84

    Article  PubMed  Google Scholar 

  45. Kardosh A, Golden EB, Pyrko P, Uddin J, Hofman FM, Chen TC, Louie SG, Petasis NA, Schonthal AH (2008) Aggravated endoplasmic reticulum stress as a basis for enhanced glioblastoma by bortezomib in combination with celecoxib or its non-coxib analogue, 2, 5-dimethyl-celecoxib. Cancer Res 68:843–851

    Article  PubMed  CAS  Google Scholar 

  46. Gaiser T, Becker MR, Habel A, Reuss DE, Ehemann V, Rami A, Siegelin MD (2008) TRAIL-mediated apoptosis in malignant glioma cells is augmented by celecoxib through proteasomal degradation of surviving. Neurosci Lett 442:109–113

    Article  PubMed  CAS  Google Scholar 

  47. Kang SG, Kim JS, Park K, Kim JS, Groves MD, Nam DH (2006) Combination celecoxib and temozolomide in C6 rat glioma orthotopic model. Oncol Rep 15:7–13

    PubMed  CAS  Google Scholar 

  48. Kim CK, Joe YA, Lee SK, Kim EK OE, Kim HK, Oh BJ, Hong SH, Hong YK (2010) Enhancement of anti-tumor activity by low-dose combination of the recombinant urokinase kringle domain and celecoxib in a glioma model. Cancer Lett 288:251–260

    Article  PubMed  CAS  Google Scholar 

  49. Kesari S, Schiff D, Henson JW, Muzikansky A, Gigas DC, Doherty L, Batchelor TT, Longtine JA, Ligon KL, Weaver S, Laforme A, Ramakrishna N, Black PM, Drappatz J, Ciampa A, Folkman J, Kieran M, Wen PY (2008) Phase II study of temozolomide, thalidomide, and celecoxib for newly diagnosed glioblastoma in adults. Neuro Oncol 10:300–308

    Article  PubMed  CAS  Google Scholar 

  50. Levin VA, Giglio P, Puduvalli VK, Jochec J, Groves MD, Yung WK, Hess K (2006) Combination chemotherapy with 13-cis-retinoic acid and celecoxib in the treatment of glioblastoma multiforme. J Neurooncol 78:85–90

    Article  PubMed  CAS  Google Scholar 

  51. Grossman SA, Oslon J, Batchelor T, Peereboom D, Lesser G, Desideri S, Ye X, Hammour T, Supko JG (2008) Effect of phenytoin on celecoxib pharmacokinetics in patients with glioblastoma. Neuro Oncol 10:190–198

    Article  PubMed  CAS  Google Scholar 

  52. Kern MA, Haugg AM, Koch AF, Schilling T, Breuhahn K, Walczak H, Fleischer B, Trautwein C, Michalski C, Schulze-Bergkamen H, Friess H, Stremmel W, Krammer PH, Schirmacher P, Muller M (2006) Cyclooxygenase-2 inhibition induces apoptosis signaling via death receptors and mitochondria in hepatocellular carcinoma. Cancer Res 66:7059–7066

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We greatly acknowledge the Professor P. Reddanna (University of Hyderabad, India) for providing celecoxib. DBT, DST, CSIR, and ICMR are acknowledged for funding the laboratory, and CSIR, New Delhi, India (fellowship to GRS) is also acknowledged. We acknowledge Dr Syed Maqbool Ahmed, in charge of the CIL facility, UoH, and technical assistance of Miss Nalini for the confocal microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phanithi Prakash Babu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11060_2011_662_MOESM1_ESM.tif

Supplementary Fig. 1 Effect of celecoxib on apoptosis of GBM cells. U373 (a) and T98G (b) cells were seeded in chamber plates and treated with vehicle (0.1% DMSO) or the indicated concentrations of celecoxib for 12 h. The cells were then subjected to TUNEL assay as described in the Materials and methods section. DAPI was used to identify nuclei, and data are representative of three independent experiments

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sareddy, G.R., Geeviman, K., Ramulu, C. et al. The nonsteroidal anti-inflammatory drug celecoxib suppresses the growth and induces apoptosis of human glioblastoma cells via the NF-κB pathway. J Neurooncol 106, 99–109 (2012). https://doi.org/10.1007/s11060-011-0662-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-011-0662-x

Keywords

Navigation