[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Research Progress on Alzheimer's Disease and Resveratrol

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alzheimer's disease (AD), a common irreversible neurodegenerative disease characterized by amyloid-β plaques, neurofibrillary tangles, and changes in tau phosphorylation, is accompanied by memory loss and symptoms of cognitive dysfunction. Increases in disease incidence due to the ageing of the population have placed a great burden on society. To date, the mechanism of AD and the identities of adequate drugs for AD prevention and treatment have eluded the medical community. It has been confirmed that phytochemicals have certain neuroprotective effects against AD. For example, some progress has been made in research on the use of resveratrol, a natural polyphenolic phytochemical, for the prevention and treatment of AD in recent years. Elucidation of the pathogenesis of AD will create a solid foundation for drug treatment. In addition, research on resveratrol, including its mechanism of action, the roles of signalling pathways and its therapeutic targets, will provide new ideas for AD treatment, which is of great significance. In this review, we discuss the possible relationships between AD and the following factors: synapses, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs), silent information regulator 1 (SIRT1), and estrogens. We also discuss the findings of previous studies regarding these relationships in the context of AD treatment and further summarize research progress related to resveratrol treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Han X, Leng X, Zhao M et al (2017) Resveratrol increases nucleus pulposus matrix synthesis through activating the PI3K/Akt signaling pathway under mechanical compression in a disc organ culture. Biosci Rep 37(6):R20171319

    Google Scholar 

  2. Liu M, Lin X, Li J et al (2016) Resveratrol induces apoptosis through modulation of the Akt/FoxO3a/Bim pathway in HepG2 cells. Mol Med Rep 13(2):1689–1694

    CAS  PubMed  Google Scholar 

  3. Xu D, Li Y, Zhang B et al (2016) Resveratrol alleviate hypoxic pulmonary hypertension via anti-inflammation and anti-oxidant pathways in rats. Int J Med Sci 13(12):942–954

    PubMed  PubMed Central  Google Scholar 

  4. Chai R, Fu H, Zheng Z et al (2017) Resveratrol inhibits proliferation and migration through SIRT1 mediated posttranslational modification of PI3K/AKT signaling in hepatocellular carcinoma cells. Mol Med Rep 16(6):8037–8044

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Jiao Y, Li H, Liu Y et al (2015) Resveratrol inhibits the invasion of glioblastoma-initiating cells via down-regulation of the PI3K/Akt/NF-κB signaling pathway. Nutrients 7(6):4383–4402

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Feng Y, Jiang X, Ma F et al (2017) Resveratrol prevents osteoporosis by upregulating FoxO1 transcriptional activity. Int J Mol Med 41(1):202–212

    PubMed  PubMed Central  Google Scholar 

  7. Corriveau RA, Koroshetz WJ, Gladman JT et al (2017) Alzheimerʼs disease-related dementias summit 2016: national research priorities. Neurology 89(23):2381–2391

    PubMed  PubMed Central  Google Scholar 

  8. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol Med 8(6):595–608

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiqing Cao JH (2018) Advances in developing novel therapeutic strategies for Alzheimer’s disease. Mol Neurodegener 13(1):64

    PubMed  PubMed Central  Google Scholar 

  10. Viana J, Vickers JC, Cook MJ et al (2017) Currents of memory: recent progress, translational challenges, and ethical considerations in fornix deep brain stimulation trials for Alzheimer's disease. Neurobiol Aging 56:202–210

    PubMed  Google Scholar 

  11. Scholl M, Carter SF, Westman E et al (2015) Early astrocytosis in autosomal dominant Alzheimer's disease measured in vivo by multi-tracer positron emission tomography. Sci Rep 5:16404

    PubMed  PubMed Central  Google Scholar 

  12. Bellozi PMQ, Lima IVDA, Dória JG et al (2016) Neuroprotective effects of the anticancer drug NVP-BEZ235 (dactolisib) on amyloid-β 1–42 induced neurotoxicity and memory impairment. Sci Rep 6(1):25226

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mueed Z, Tandon P, Maurya SK et al (2018) Tau and mTOR: the hotspots for multifarious diseases in Alzheimer's development. Front Neurosci 12:1017

    PubMed  Google Scholar 

  14. Villemagne VL, Burnham S, Bourgeat P et al (2013) Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study. Lancet Neurol 12(4):357–367

    CAS  PubMed  Google Scholar 

  15. Engels M, van der Flier WM, Stam CJ et al (2017) Alzheimer's disease: the state of the art in resting-state magnetoencephalography. Clin Neurophysiol 128(8):1426–1437

    CAS  PubMed  Google Scholar 

  16. De Strooper B, Karran E (2016) The cellular phase of Alzheimer’s disease. Cell 164:603–615

    PubMed  Google Scholar 

  17. Zissimopoulos J, Crimmins E, St CP (2014) The value of delaying Alzheimer's disease onset. Forum Health Econ Pol 18(1):25–39

    Google Scholar 

  18. Khoury R, Patel K, Gold J et al (2017) Recent progress in the pharmacotherapy of Alzheimer's disease. Drugs Aging 34(11):811–820

    CAS  PubMed  Google Scholar 

  19. Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M, Fokou PV, Martins N, Sharifi-Rad J (2018) Resveratrol: a double-edged sword in health benefits. Biomedicines 6(3):91

    CAS  PubMed Central  Google Scholar 

  20. Lee JH, Wendorff TJ, Berger JM (2017) Resveratrol: a novel type of topoisomerase II inhibitor. J Biol Chem 292(51):21011–21022

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Diaz-Gerevini GTPD, Repossi GPD, Dain AMD et al (2016) Beneficial action of resveratrol: how and why? Nutrition 32(2):174–178

    CAS  PubMed  Google Scholar 

  22. Andrade S, Ramalho MJ, Pereira M et al (2018) Resveratrol brain delivery for neurological disorders prevention and treatment. Front Pharmacol 9:1261

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tellone E, Galtieri A, Russo A et al (2015) Resveratrol: a focus on several neurodegenerative diseases. Oxid Med Cell Longev 2015:392114–392169

    Google Scholar 

  24. Ai Z, Li C, Li L et al (2015) Resveratrol inhibits β-amyloid-induced neuronal apoptosis via regulation of p53 acetylation in PC12 cells. Mol Med Rep 11(4):2429–2434

    CAS  PubMed  Google Scholar 

  25. Varamini B, Sikalidis AK, Bradford KL (2014) Resveratrol increases cerebral glycogen synthase kinase phosphorylation as well as protein levels of drebrin and transthyretin in mice: an exploratory study. Int J Food Sci Nutr 65(1):89–96

    CAS  PubMed  Google Scholar 

  26. Kim MY, Lim JH, Youn HH et al (2013) Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK–SIRT1–PGC1α axis in db/db mice. Diabetologia 56(1):204–217

    CAS  PubMed  Google Scholar 

  27. Wang H, Jiang T (2017) Resveratrol attenuates oxidative damage through activating mitophagy in an in vitro model of Alzheimer's disease. Toxicol Lett 282:100–108

    PubMed  Google Scholar 

  28. Jin YL, Xin LM (2018) Polydatin exerts anti-tumor effects against renal cell carcinoma cells via induction of caspasedependent apoptosis and inhibition of the Pi3K-AKT pathway. Orig Res. 11:8185–8195

    CAS  Google Scholar 

  29. Schreiner D, Savas JN, Herzog E et al (2016) Synapse biology in the ‘circuit-age’—paths toward molecular connectomics. Curr Opin Neurobiol 42:102–110

    PubMed  PubMed Central  Google Scholar 

  30. Miller AC, Pereda AE (2017) The electrical synapse: molecular complexities at the gap and beyond. Dev Neurobiol 77(5):562–574

    PubMed  PubMed Central  Google Scholar 

  31. Harris JJ, Jolivet R, Attwell D (2012) Synaptic energy use and supply. Neuron 75(5):762–777

    CAS  PubMed  Google Scholar 

  32. Lepeta K, Lourenco MV, Schweitzer BC et al (2016) Synaptopathies: synaptic dysfunction in neurological disorders—a review from students to students. J Neurochem 138(6):785–805

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rajmohan R, Reddy PH (2017) Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer's disease neurons. J Alzheimers Dis 57(4):975–999

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39

    CAS  PubMed  Google Scholar 

  35. Redondo RL, Morris RG (2011) Making memories last: the synaptic tagging and capture hypothesis. Nat Rev Neurosci 12(1):17–30

    CAS  PubMed  Google Scholar 

  36. Shefa U, Kim D, Kim MS et al (2018) Roles of gasotransmitters in synaptic plasticity and neuropsychiatric conditions. Neural Plast 2018:1824713

    PubMed  PubMed Central  Google Scholar 

  37. Sanderson JL, Scott JD, Dell'Acqua ML (2018) Control of homeostatic synaptic plasticity by AKAP-anchored kinase and phosphatase regulation of Ca2+ -permeable AMPA receptors. J Neurosci 38(11):2863–2876

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang J, Ikeuchi Y, Malumbres M et al (2015) A Cdh1-APC/FMRP ubiquitin signaling link drives mGluR-dependent synaptic plasticity in the mammalian brain. Neuron 86(3):726–739

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zenke F, Agnes EJ, Gerstner W (2015) Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks. Nat Commun 6:6922

    CAS  PubMed  Google Scholar 

  40. Rizzo FR, Musella A, De Vito F et al (2018) Tumor necrosis factor and interleukin-1beta modulate synaptic plasticity during neuroinflammation. Neural Plast 2018:8430123

    PubMed  PubMed Central  Google Scholar 

  41. Scheff SW, Price DA (1993) Synapse loss in the temporal lobe in Alzheimer's disease. Ann Neurol 33(2):190–199

    CAS  PubMed  Google Scholar 

  42. Dominguez-Prieto M, Velasco A, Vega L et al (2017) Aberrant co-localization of synaptic proteins promoted by Alzheimer's disease amyloid-beta peptides: protective effect of human serum albumin. J Alzheimers Dis 55(1):171–182

    CAS  PubMed  Google Scholar 

  43. Yang Bai MLWG (2017) Abnormal dendritic calcium activity and synaptic depotentiation occur early in a mouse model of Alzheimers disease. Mol Neurodegener 12:86

    PubMed  PubMed Central  Google Scholar 

  44. Berchtold NC, Coleman PD, Cribbs DH et al (2013) Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer's disease. Neurobiol Aging 34(6):1653–1661

    CAS  PubMed  Google Scholar 

  45. Ping Y, Hahm E, Waro G et al (2015) Linking Aβ42-induced hyperexcitability to neurodegeneration, learning and motor deficits, and a shorter lifespan in an Alzheimer’s Model. PLoS Genet 11(3):e1005025

    PubMed  PubMed Central  Google Scholar 

  46. Crews L, Masliah E (2010) Molecular mechanisms of neurodegeneration in Alzheimer's disease. Hum Mol Genet 19(R1):R12–R20

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jackson RJ, Rudinskiy N, Herrmann AG, Croft S, Kim JM, Petrova V, Ramos-Rodriguez JJ, Pitstick R, Wegmann S, Garcia-Alloza M, Carlson GA (2016) Human tau increases amyloid b plaque size but not amyloid b-mediated synapse loss in a novel mouse model of Alzheimer’s disease. Eur J Neurosci 44:3056–3066

    PubMed  PubMed Central  Google Scholar 

  48. Hu N, Corbett GT, Moore S et al (2018) Extracellular forms of Aβ and tau from iPSC models of Alzheimer’s disease disrupt synaptic plasticity. Cell Rep 23(7):1932–1938

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Usenovic M, Niroomand S, Drolet RE et al (2015) Internalized tau oligomers cause neurodegeneration by inducing accumulation of pathogenic tau in human neurons derived from induced pluripotent stem cells. J Neurosci 35(42):14234–14250

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pickett EK, Rose J, McCrory C et al (2018) Region-specific depletion of synaptic mitochondria in the brains of patients with Alzheimer’s disease. Acta Neuropathol 136(5):747–757

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kulijewicz-Nawrot M, Syková E, Chvátal A et al (2013) Astrocytes and glutamate homoeostasis in Alzheimer's disease: a decrease in glutamine synthetase, but not in glutamate transporter-1, in the prefrontal cortex. ASN Neuro 5(4):N20130017

    Google Scholar 

  52. Stobart JL, Anderson CM (2013) Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Front Cell Neurosci 7:38

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kamat PK, Kalani A, Rai S et al (2016) Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s disease: understanding the therapeutics strategies. Mol Neurobiol 53(1):648–661

    CAS  PubMed  Google Scholar 

  54. Hanley JG (2018) The regulation of AMPA receptor endocytosis by dynamic protein-protein interactions. Front Cell Neurosci 12:362

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ménard C, Quirion R (2012) Group 1 metabotropic glutamate receptor function and its regulation of learning and memory in the aging brain. Front Pharmacol 3:182

    PubMed  PubMed Central  Google Scholar 

  56. Papazian I, Kyrargyri V (2018) Mesenchymal stem cell protection of neurons against glutamate excitotoxicity involves reduction of NMDA-triggered calcium responses and surface GluR1, and is partly mediated by TNF. Int J Mol Sci 19(3):651

    PubMed Central  Google Scholar 

  57. Song I, Huganir RL (2002) Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci 25(11):578–588

    CAS  PubMed  Google Scholar 

  58. Penn AC, Zhang CL, Georges F et al (2017) Hippocampal LTP and contextual learning require surface diffusion of AMPA receptors. Nature 549(7672):384–388

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Jacob AL, Weinberg RJ (2015) The organization of AMPA receptor subunits at the postsynaptic membrane. Hippocampus 25(7):798–812

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Borges K, Dingledine R (1998) AMPA receptors: molecular and functional diversity. Prog Brain Res 116:153

    CAS  PubMed  Google Scholar 

  61. Reinders NR, Pao Y, Renner MC et al (2016) Amyloid-β effects on synapses and memory require AMPA receptor subunit GluA3. Proc Natl Acad Sci USA 113(42):E6526–E6534

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ancona ES, Diaz-Alonso J, Levy JM et al (2017) Synaptic homeostasis requires the membrane-proximal carboxy tail of GluA2. Proc Natl Acad Sci USA 114(50):13266–13271

    Google Scholar 

  63. Lu W, Khatri L, Ziff EB (2014) Trafficking of AMPAR subunit GluA2 from the endoplasmic reticulum is stimulated by a complex containing CaMKII and PICK1 protein and by release of Ca2+ from Internal stores. J Biol Chem 27(289):19218–19230

    Google Scholar 

  64. Reinders NR, Pao Y, Renner MC et al (2016) Amyloid-beta effects on synapses and memory require AMPA receptor subunit GluA3. Proc Natl Acad Sci USA 113(42):E6526–E6534

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Rubio ME, Matsui K, Fukazawa Y et al (2017) The number and distribution of AMPA receptor channels containing fast kinetic GluA3 and GluA4 subunits at auditory nerve synapses depend on the target cells. Brain Struct Funct 222(8):3375–3393

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Gilbert J, Shu S, Yang X (2016) β-Amyloid triggers aberrant over-scaling of homeostatic synaptic plasticity. Acta Neuropathol Commun 4(1):131

    PubMed  PubMed Central  Google Scholar 

  67. Miyamoto T, Kim D, Knox J (2016) Increasing the receptor tyrosine kinase Eph B2 prevents amyloid-induced depletion of cell surface glutamate receptors by a mechanism that requires the PDZ-binding motif of EphB2 and neuronal activity. J Biol Chem 291:1719–1734

    CAS  PubMed  Google Scholar 

  68. Alfonso S, Kessels HW, Banos CC et al (2014) Synapto-depressive effects of amyloid beta require PICK1. Eur J Neurosci 39(7):1225–1233

    PubMed  PubMed Central  Google Scholar 

  69. Zhang Y, Guo O, Huo Y et al (2018) Amyloid-beta induces AMPA receptor ubiquitination and degradation in primary neurons and human brains of Alzheimer's disease. J Alzheimers Dis 62(4):1789–1801

    PubMed  PubMed Central  Google Scholar 

  70. Moretto E, Passafaro M (2018) Recent findings on AMPA receptor recycling. Front Cell Neurosci 12:286

    PubMed  PubMed Central  Google Scholar 

  71. Whitehead G, Regan P, Whitcomb DJ et al (2017) Ca(2+)-permeable AMPA receptor: a new perspective on amyloid-beta mediated pathophysiology of Alzheimer's disease. Neuropharmacology 112(Pt A):221–227

    CAS  PubMed  Google Scholar 

  72. Mair W, Muntel J, Tepper K et al (2016) FLEXITau: quantifying post-translational modifications of tau protein in vitro and in human disease. Anal Chem 88(7):3704–3714

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Tracy TE, Gan L (2017) Acetylated tau in Alzheimer's disease: an instigator of synaptic dysfunction underlying memory loss: ncreased levels of acetylated tau blocks the postsynaptic signaling required for plasticity and promotes memory deficits associated with tauopathy. BioEssays 39(4):1600224

    Google Scholar 

  74. Fu H, Chen Z, Josephson L et al (2019) Positron emission tomography (PET) ligand development for ionotropic glutamate receptors: challenges and opportunities for radiotracer targeting N-methyl-d-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and kainate receptors. J Med Chem 62(2):403–419

    CAS  PubMed  Google Scholar 

  75. Guivernau B, Bonet J, Valls-Comamala V et al (2016) Amyloid-β peptide nitrotyrosination stabilizes oligomers and enhances NMDAR-mediated toxicity. J Neurosci 36(46):11693–11703

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Liang J, Kulasiri D, Samarasinghe S (2017) Computational investigation of amyloid-β-induced location- and subunit-specific disturbances of NMDAR at hippocampal dendritic spine in Alzheimer’s disease. PLoS ONE 12(8):e182743

    Google Scholar 

  77. Van Bulck M, Sierra-Magro A, Alarcon-Gil J et al (2019) Novel approaches for the treatment of Alzheimer’s and Parkinson’s disease. Int J Mol Sci 20(3):719

    PubMed Central  Google Scholar 

  78. Rubio ME, Fukazawa Y, Kamasawa N et al (2014) Target- and input-dependent organization of AMPA and NMDA receptors in synaptic connections of the cochlear nucleus. J Comp Neurol 522(18):4023–4042

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Jang S, Royston SE, Xu J et al (2015) Regulation of STEP61 and tyrosine-phosphorylation of NMDA and AMPA receptors during homeostatic synaptic plasticity. Mol Brain 8(1):55

    PubMed  PubMed Central  Google Scholar 

  80. Parkinson GT, Hanley JG (2018) Mechanisms of AMPA receptor endosomal sorting. Front Mol Neurosci 11:440

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Menon V, Musial TF, Liu A et al (2013) Balanced synaptic impact via distance-dependent synapse distribution and complementary expression of AMPARs and NMDARs in hippocampal dendrites. Neuron 80(6):1451–1463

    CAS  PubMed  Google Scholar 

  82. Feng Y, Wang X, Yang S et al (2009) Resveratrol inhibits beta-amyloid oligomeric cytotoxicity but does not prevent oligomer formation. NeuroToxicology 30(6):986–995

    CAS  PubMed  Google Scholar 

  83. Meftahi G, Ghotbedin Z, Eslamizade MJ et al (2015) Suppressive effects of resveratrol treatment on the intrinsic evoked excitability of CA1 pyramidal neurons. Cell J 17(3):532–539

    PubMed  PubMed Central  Google Scholar 

  84. Hu W, Yang E, Ye J et al (2018) Resveratrol protects neuronal cells from isoflurane-induced inflammation and oxidative stress-associated death by attenuating apoptosis via Akt/p38 MAPK signaling. Exp Ther Med 15(2):1568–1573

    CAS  PubMed  Google Scholar 

  85. De Almeida LMV, Piñeiro CC, Leite MC et al (2007) Resveratrol increases glutamate uptake, glutathione content, and S100B secretion in cortical astrocyte cultures. Cell Mol Neurobiol 27(5):661–668

    PubMed  Google Scholar 

  86. Zhang H, Schools GP, Lei T et al (2008) Resveratrol attenuates early pyramidal neuron excitability impairment and death in acute rat hippocampal slices caused by oxygen-glucose deprivation. Exp Neurol 212(1):44–52

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Li Y, Yu L, Zhao L et al (2017) Resveratrol modulates cocaine-induced inhibitory synaptic plasticity in VTA dopamine neurons by inhibiting phosphodiesterases (PDEs). Sci Rep 7(1):1–10

    Google Scholar 

  88. Wang G, Amato S, Gilbert J (2015) Resveratrol up-regulates AMPA receptor expression via AMP-activated protein kinase-mediated protein translation. Neuropharmacology 95:144–153

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Suvorova II, Knyazeva AR, Petukhov AV et al (2019) Resveratrol enhances pluripotency of mouse embryonic stem cells by activating AMPK/Ulk1 pathway. Cell Death Discov 5:61

    PubMed  PubMed Central  Google Scholar 

  90. Cokorinos EC, Delmore J, Reyes AR (2017) Activation of skeletal muscle AMPK promotes glucose disposal and glucose lowering in nonhuman primates and mice. Cell Metab 25:1147–1159

    CAS  PubMed  Google Scholar 

  91. Cheng PW, Lee HC (2016) Resveratrol inhibition of Rac1 derived reactive oxygen species by AMPK decreases blood pressure in a fructose-induced rat model of hypertension. Sci Rep 6:25342

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Han F, Li CF, Cai Z et al (2018) The critical role of AMPK in driving Akt activation under stress, tumorigenesis and drug resistance. Nat Commun 9(1):4728

    PubMed  PubMed Central  Google Scholar 

  93. Whitcomb DJ, Hogg EL, Regan P (2015) Intracellular oligomeric amyloid-beta rapidly regulates GluA1 subunit of AMPA receptor in the hippocampus. Sci Rep 9:10934

    Google Scholar 

  94. Wang Q, Sun X, Li X, Dong X, Li P, Zhao L (2015) Resveratrol attenuates intermittent hypoxia-induced insulin resistance in rats. Mol Med Rep 11:151–158

    CAS  PubMed  Google Scholar 

  95. Velagapudi R, El-Bakoush A, Lepiarz I et al (2017) AMPK and SIRT1 activation contribute to inhibition of neuroinflammation by thymoquinone in BV2 microglia. Mol Cell Biochem 435(1):149–162

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Fujita Y, Yamashita T (2018) Sirtuins in neuroendocrine regulation and neurological diseases. Front Neurosci 12:778

    PubMed  PubMed Central  Google Scholar 

  97. Wang N, Zhang F, Yang L et al (2017) Resveratrol protects against L-arginine-induced acute necrotizing pancreatitis in mice by enhancing SIRT1-mediated deacetylation of p53 and heat shock factor 1. Int J Mol Med 40(2):427–437

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Sugino T, Maruyama M, Tanno M et al (2010) Protein deacetylase SIRT1 in the cytoplasm promotes nerve growth factor-induced neurite outgrowth in PC12 cells. FEBS Lett 584(13):2821–2826

    CAS  PubMed  Google Scholar 

  99. Hou X, Rooklin D, Fang H et al (2016) Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation. Sci Rep 6(1):38186

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Li Y, Xu W, McBurney MW et al (2008) SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab 8(1):38–48

    PubMed  PubMed Central  Google Scholar 

  101. Yang X, Si P, Qin H et al (2017) The neuroprotective effects of SIRT1 on NMDA-induced excitotoxicity. Oxid Med Cell Longev. https://doi.org/10.1155/2017/2823454

    Article  PubMed  PubMed Central  Google Scholar 

  102. Li MZ, Zheng LJ (2019) SIRT1 facilitates amyloid beta peptide degradation by upregulating lysosome number in primary astrocytes. Neural Regener Res 13:2005

    Google Scholar 

  103. Donmez G, Outeiro TF (2013) SIRT1 and SIRT2. Emerging targets in neurodegeneration. EMBO Mol Med 5(3):344–352

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen J, Zhou Y (2005) SIRT1 protects against microglia-dependent amyloid-β toxicity through inhibiting NF-kB signaling. J Biol Chem 280:40364–40374

    CAS  PubMed  Google Scholar 

  105. Van Bulck M, Sierra-Magro A (2019) Novel approaches for the treatment of Alzheimer’s and Parkinson’s disease. Int J Mol Sci 20:719

    PubMed Central  Google Scholar 

  106. Min S, Sohn PD, Li Y et al (2018) SIRT1 deacetylates tau and reduces pathogenic tau spread in a mouse model of tauopathy. J Neurosci 38(15):3680–3688

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Min S, Cho S, Zhou Y et al (2010) Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67(6):953–966

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Yin X, Jiang X, Wang J et al (2017) SIRT1 deacetylates SC35 and suppresses its function in tau exon 10 inclusion. J Alzheimer's Dis 61(2):561–570

    Google Scholar 

  109. Futch HS, Croft CL (2018) SIRT1: a novel way to target tau? J Neurosci 38(36):7755–7757

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Alzheimer’s Association (2018) Alzheimers-disease-facts-and-figures-2018. Alzheimer’s Dement 2018:1552–5260

    Google Scholar 

  111. Sun P, Yin J, Liu L et al (2019) Protective role of dihydromyricetin in Alzheimer’s disease rat model associated with activating AMPK/SIRT1 signaling pathway. Biosci Rep 39(1):R20180902

    Google Scholar 

  112. Wang L, Quan N, Sun W et al (2018) Cardiomyocyte-specific deletion of Sirt1 gene sensitizes myocardium to ischaemia and reperfusion injury. Cardiovasc Res 114(6):805–821

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Shuqi DuLM (2019) The role of FOXO3 transcription factor in Alzheimer’s disease pathology. Innov Aging 3:S842–S843

    Google Scholar 

  114. Wong HA, Veremeyko T, Patel N et al (2013) De-repression of FOXO3a death axis by microRNA-132 and -212 causes neuronal apoptosis in Alzheimer's disease. Hum Mol Genet 22(15):3077–3092

    CAS  PubMed  Google Scholar 

  115. Lin C, Lin C, Ting W et al (2014) Resveratrol enhanced FOXO3 phosphorylation via synergetic activation of SIRT1 and PI3K/Akt signaling to improve the effects of exercise in elderly rat hearts. AGE 36(5):9705

    PubMed  PubMed Central  Google Scholar 

  116. Chen S, Yang D, Lin T et al (2011) Roles of oxidative stress, apoptosis, PGC-1α and mitochondrial biogenesis in cerebral ischemia. Int J Mol Sci 12(10):7199–7215

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Cheng A, Wan R, Yang J et al (2012) Involvement of PGC-1α in the formation and maintenance of neuronal dendritic spines. Nat Commun 3(1):1–2

    CAS  Google Scholar 

  118. Kim EN, Lim JH, Kim MY et al (2018) Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury. Aging (Albany NY) 10(1):83–99

    CAS  Google Scholar 

  119. Kuno A, Hori YS, Hosoda R et al (2013) Resveratrol improves cardiomyopathy in dystrophin-deficient mice through SIRT1 protein-mediated modulation of p300 protein. J Biol Chem 288(8):5963–5972

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Hu X, Wang T, Jin F (2016) Alzheimer’s disease and gut microbiota. Sci China Life Sci 59(10):1006–1023

    CAS  PubMed  Google Scholar 

  121. Zhang S, Gao L, Liu X (2017) Resveratrol attenuates microglial activation via SIRT1-SOCS1 pathway. Evid-Based Complement Altern Med. https://doi.org/10.1155/2017/8791832

    Article  Google Scholar 

  122. Meng Z, Li J, Zhao H et al (2015) Resveratrol relieves ischemia-induced oxidative stress in the hippocampus by activating SIRT1. Exp Ther Med 10(2):525–530

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Maugeri A, Barchitta M, Mazzone MG et al (2018) Resveratrol modulates SIRT1 and DNMT functions and restores LINE-1 methylation levels in ARPE-19 cells under oxidative stress and inflammation. Int J Mol Sci 19(7):2118

    PubMed Central  Google Scholar 

  124. Chen J, Zhou Y, Mueller-Steiner S et al (2005) SIRT1 protects against microglia-dependent amyloid-β toxicity through inhibiting NF-κB signaling. J Biol Chem 280(48):40364–40374

    CAS  PubMed  Google Scholar 

  125. Li X, Yang S, Wang L et al (2019) Resveratrol inhibits paclitaxel-induced neuropathic pain by the activation of PI3K/Akt and SIRT1/ PGC1α; pathway. J Pain Res 12:879–890

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang B, Yang Q, Sun Y et al (2014) Resveratrol-enhanced autophagic flux ameliorates myocardial oxidative stress injury in diabetic mice. J Cell Mol Med 18(8):1599–1611

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Li X, Yang S, Wang L et al (2019) Resveratrol inhibits paclitaxel-induced neuropathic pain by the activation of PI3K/Akt and SIRT1/PGC1α; pathway. J Pain Res 12:879–890

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Cai Z, Zhou Y, Liu Z et al (2015) Autophagy dysfunction upregulates beta-amyloid peptides via enhancing the activity of γ-secretase complex. Neuropsychiatr Dis Treat 11:2091–2099

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Xiaowen Feng NLJS (2013) Resveratrol inhibits b-amyloid-induced neuronal apoptosis through regulation of SIRT1-ROCK1 signaling pathway. PLoS ONE 8:1–11

    Google Scholar 

  130. Yan P, Bai L, Lu W et al (2017) Regulation of autophagy by AMP-activated protein kinase/sirtuin 1 pathway reduces spinal cord neurons damage. Iran J Basic Med Sci 20(9):1029–1036

    PubMed  PubMed Central  Google Scholar 

  131. Lan F, Weikel K, Cacicedo J et al (2017) Resveratrol-induced AMP-activated protein kinase activation is cell-type dependent: lessons from basic research for clinical application. Nutrients 9(7):751

    PubMed Central  Google Scholar 

  132. Faggi L, Pignataro G, Parrella E et al (2018) Synergistic association of valproate and resveratrol reduces brain injury in ischemic stroke. Int J Mol Sci 19(1):172

    PubMed Central  Google Scholar 

  133. Li X, Lee YJ, Jin F et al (2017) Sirt1 negatively regulates FcεRI-mediated mast cell activation through AMPK- and PTP1B-dependent processes. Sci Rep 7(1):1–2

    Google Scholar 

  134. Suvorova II, Knyazeva AR, Petukhov AV et al (2019) Resveratrol enhances pluripotency of mouse embryonic stem cells by activating AMPK/Ulk1 pathway. Cell Death Discov 5(1):1–4

    Google Scholar 

  135. Yu F, Li M, Yuan Z et al (2018) Mechanism research on a bioactive resveratrol–PLA–gelatin porous nano-scaffold in promoting the repair of cartilage defect. Int J Nanomed 13:7845–7858

    CAS  Google Scholar 

  136. Mancuso R, Del Valle J, Modol L et al (2014) Resveratrol improves motoneuron function and extends survival in SOD1G93A ALS mice. Neurotherapeutics 11(2):419–432

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Mosconi L, Berti V, Quinn C et al (2017) Sex differences in Alzheimer risk. Neurology 89(13):1382–1390

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhao L, Woody SK, Chhibber A (2015) Estrogen receptor β in Alzheimer’s disease: from mechanisms to therapeutics. Ageing Res Rev 24:178–190

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Lee JH, Jiang Y, Han DH et al (2014) Targeting estrogen receptors for the treatment of Alzheimer’s disease. Mol Neurobiol 49(1):39–49

    CAS  PubMed  Google Scholar 

  140. Preciados M, Yoo C, Roy D (2016) Estrogenic endocrine disrupting chemicals influencing NRF1 regulated gene networks in the development of complex human brain diseases. Int J Mol Sci 17(12):2086

    PubMed Central  Google Scholar 

  141. Engler-Chiurazzi EB, Brown CM, Povroznik JM et al (2017) Estrogens as neuroprotectants: estrogenic actions in the context of cognitive aging and brain injury. Prog Neurobiol 157:188–211

    CAS  PubMed  Google Scholar 

  142. Broestl L, Worden K (2018) Ovarian cycle stages modulate Alzheimer-related cognitive and brain network alterations in female mice. eNeuro. https://doi.org/10.1523/ENEURO.0132-17.2018

    Article  PubMed  PubMed Central  Google Scholar 

  143. Marin R, Diaz M (2018) Estrogen interactions with lipid rafts related to neuroprotection. Impact of brain ageing and menopause. Front Neurosci 12:128

    PubMed  PubMed Central  Google Scholar 

  144. Chakrabarti M, Haque A, Banik NL et al (2014) Estrogen receptor agonists for attenuation of neuroinflammation and neurodegeneration. Brain Res Bull 109:22–31

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Nilsen J, Chen S, Irwin RW et al (2006) Estrogen protects neuronal cells from amyloid beta-induced apoptosis via regulation of mitochondrial proteins and function. BMC Neurosci 7:74

    PubMed  PubMed Central  Google Scholar 

  146. Park SY, Tournell C, Sinjoanu RC et al (2007) Caspase-3- and calpain-mediated tau cleavage are differentially prevented by estrogen and testosterone in beta-amyloid-treated hippocampal neurons. Neuroscience 144(1):119–127

    CAS  PubMed  Google Scholar 

  147. Numakawa T, Matsumoto T, Numakawa Y et al (2011) Protective action of neurotrophic factors and estrogen against oxidative stress-mediated neurodegeneration. J Toxicol 2011:1–12

    Google Scholar 

  148. Suwanna N, Thangnipon W, Kumar S, de Vellis J (2014) Original article: neuroprotection by diarylpropionitrile in mice with spinal cord injury. EXCLI J 13:1097–1103

    PubMed  PubMed Central  Google Scholar 

  149. Villa A, Rizzi N, Vegeto E et al (2015) Estrogen accelerates the resolution of inflammation in macrophagic cells. Sci Rep 5(1):15224

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Tamrakar P, Ibrahim BA, Gujar AD et al (2015) Estrogen regulates energy metabolic pathway and upstream adenosine 5′-monophosphate-activated protein kinase and phosphatase enzyme expression in dorsal vagal complex metabolosensory neurons during glucostasis and hypoglycemia. J Neurosci Res 93(2):321–332

    CAS  PubMed  Google Scholar 

  151. Villa A, Vegeto E, Poletti A et al (2016) Estrogens, neuroinflammation, and neurodegeneration. Endocr Rev 37(4):372–402

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Hwang CJ, Yun H, Park K et al (2015) Memory impairment in estrogen receptor α knockout mice through accumulation of amyloid-β peptides. Mol Neurobiol 52(1):176–186

    CAS  PubMed  Google Scholar 

  153. Sharma R, Sharma NK, Thungapathra M (2017) Resveratrol regulates body weight in healthy and ovariectomized rats. Nutr Metab 14(1):30

    Google Scholar 

  154. Bowers JL, Tyulmenkov VV, Jernigan SC et al (2000) Resveratrol acts as a mixed agonist/antagonist for estrogen receptors alpha and beta. Endocrinology 141(10):3657–3667

    CAS  PubMed  Google Scholar 

  155. Bhat BSHK (2014) Resveratrol inhibits estrogen-induced breast carcinogenesis through induction of NRF2-mediated protective pathways. Carcinogenesis 40:1–35

    Google Scholar 

  156. Meng Z, Jing H, Gan L et al (2016) Resveratrol attenuated estrogen-deficient-induced cardiac dysfunction: role of AMPK, SIRT1, and mitochondrial function. Am J Transl Res 8(6):2641–2649

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Xie W, Ge X, Li L et al (2018) Resveratrol ameliorates prenatal progestin exposure-induced autism-like behavior through ERβ activation. Mol Autism 9(1):13–43

    Google Scholar 

  158. Kong D, Yan Y, He X et al (2019) Effects of resveratrol on the mechanisms of antioxidants and estrogen in Alzheimer’s disease. Biomed Res Int 2019:1–8

    Google Scholar 

  159. Kong D, Zhan Y, Liu Z et al (2016) SIRT1-mediated ERβ suppression in the endothelium contributes to vascular aging. Aging Cell 15(6):1092–1102

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Poschner S, Maier-Salamon A, Zehl M et al (2018) Resveratrol inhibits key steps of steroid metabolism in a human estrogen-receptor positive breast cancer model: impact on cellular proliferation. Front Pharmacol 9:742

    PubMed  PubMed Central  Google Scholar 

  161. Chatterjee A, Ronghe A, Singh B et al (2014) Natural antioxidants exhibit chemopreventive characteristics through the regulation of CNC b-zip transcription factors in estrogen-induced breast carcinogenesis. J Biochem Mol Toxicol 28(12):529–538

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Ronghe A, Chatterjee A, Singh B et al (2014) Differential regulation of estrogen receptors α and β by 4-(E)-{(4-hydroxyphenylimino)-methylbenzene,1,2-diol}, a novel resveratrol analog. J Steroid Biochem Mol Biol 144:500–512

    CAS  PubMed  Google Scholar 

  163. Yan Y, Zhou XE, Xu HE et al (2018) Structure and physiological regulation of AMPK. Int J Mol Sci 19(11):3534

    PubMed Central  Google Scholar 

  164. Curry DW, Stutz B, Andrews ZB et al (2018) Targeting AMPK signaling as a neuroprotective strategy in Parkinson's disease. J Parkinsons Dis 8(2):161–181

    PubMed  PubMed Central  Google Scholar 

  165. Chen Q, Lesnefsky EJ (2018) A new strategy to decrease cardiac injury in aged heart following ischaemia-reperfusion: enhancement of the interaction between AMPK and SIRT1. Cardiovasc Res 114(6):771–772

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Yao L, Wan J, Li H et al (2015) Resveratrol relieves gestational diabetes mellitus in mice through activating AMPK. Reprod Biol Endocrinol 13(1):118

    PubMed  PubMed Central  Google Scholar 

  167. Qi Y, Shang JY, Ma LJ et al (2014) Inhibition of AMPK expression in skeletal muscle by systemic inflammation in COPD rats. Respir Res 15:156

    PubMed  PubMed Central  Google Scholar 

  168. Mo CWLZJ (2014) Urolithin A attenuates memory impairment and neuroinflammation in APP/PS1 mice. Antioxid Redox Signal 20:574–588

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Yang Y, Hu L, Xia Y et al (2016) Resveratrol suppresses glial activation and alleviates trigeminal neuralgia via activation of AMPK. J Neuroinflamm 13(1):84

    Google Scholar 

  170. Wang X, Zimmermann HR, Ma T (2019) Therapeutic potential of AMP-activated protein kinase in Alzheimer’s disease. J Alzheimer's Dis 68(1):33–38

    Google Scholar 

  171. Vingtdeux V, Davies P, Dickson DW et al (2011) AMPK is abnormally activated in tangle- and pre-tangle-bearing neurons in Alzheimer’s disease and other tauopathies. Acta Neuropathol 121(3):337–349

    CAS  PubMed  Google Scholar 

  172. Ma T, Chen Y, Vingtdeux V et al (2014) Inhibition of AMP-activated protein kinase signaling alleviates impairments in hippocampal synaptic plasticity induced by amyloid. J Neurosci 34(36):12230–12238

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Won J, Im Y, Kim J et al (2010) Involvement of AMP-activated-protein-kinase (AMPK) in neuronal amyloidogenesis. Biochem Biophys Res Commun 399(4):487–491

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Garza-Lombó C, Schroder A, Reyes-Reyes EM et al (2018) mTOR/AMPK signaling in the brain: cell metabolism, proteostasis and survival. Curr Opin Toxicol 8:102–110

    PubMed  PubMed Central  Google Scholar 

  175. Paige C, Mejia G, Dussor G et al (2019) AMPK activation regulates P-body dynamics in mouse sensory neurons in vitro and in vivo. Neurobiol Pain 5:100026

    PubMed  Google Scholar 

  176. Lim MA, Selak MA, Xiang Z et al (2012) Reduced activity of AMP-activated protein kinase protects against genetic models of motor neuron disease. J Neurosci 32(3):1123–1141

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Domise M, Didier S, Marinangeli C et al (2016) AMP-activated protein kinase modulates tau phosphorylation and tau pathology in vivo. Sci Rep 6(1):26758

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Domise M, Sauvé F, Didier S et al (2019) Neuronal AMP-activated protein kinase hyper-activation induces synaptic loss by an autophagy-mediated process. Cell Death Dis 10(3):1–5

    Google Scholar 

  179. Mairet-Coello G, Courchet J, Pieraut S et al (2013) The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Aβ oligomers through Tau phosphorylation. Neuron 78(1):94–108

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Koppel J, Jimenez H, Adrien L et al (2016) Haloperidol inactivates AMPK and reduces tau phosphorylation in a tau mouse model of Alzheimer's disease. Alzheimer's Dement 2(2):121–130

    Google Scholar 

  181. Velagapudi R, El-Bakoush A, Lepiarz I et al (2017) AMPK and SIRT1 activation contribute to inhibition of neuroinflammation by thymoquinone in BV2 microglia. Mol Cell Biochem 435(1–2):149–162

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Wang S, Liang X, Yang Q et al (2015) Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) α1. Int J Obes 39(6):967–976

    CAS  Google Scholar 

  183. Wang S, Liang X, Yang Q et al (2017) Resveratrol enhances brown adipocyte formation and function by activating AMP-activated protein kinase (AMPK) α1 in mice fed high-fat diet. Mol Nutr Food Res 61(4):1600746

    Google Scholar 

  184. Mungai PT, Waypa GB, Jairaman A et al (2011) Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels. Mol Cell Biol 31(17):3531–3545

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Kulkarni SS, Cantó C (2015) The molecular targets of resveratrol. Biochim Biophys Acta 1852(6):1114–1123

    CAS  PubMed  Google Scholar 

  186. Saunier E, Antonio S, Regazzetti A et al (2017) Resveratrol reverses the Warburg effect by targeting the pyruvate dehydrogenase complex in colon cancer cells. Sci Rep 7(1):1–6

    CAS  Google Scholar 

  187. Zhou X, Chen M, Zeng X et al (2014) Resveratrol regulates mitochondrial reactive oxygen species homeostasis through Sirt3 signaling pathway in human vascular endothelial cells. Cell Death Dis 5(12):e1576

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Ido Y, Duranton A, Lan F et al (2015) Resveratrol prevents oxidative stress-induced senescence and proliferative dysfunction by activating the AMPK-FOXO3 cascade in cultured primary human keratinocytes. PLoS ONE 10(2):e115341

    Google Scholar 

  189. Wang X, Zhu L, Hong X et al (2016) Resveratrol attenuated TNF-α–induced MMP-3 expression in human nucleus pulposus cells by activating autophagy via AMPK/SIRT1 signaling pathway. Exp Biol Med 241(8):848–853

    CAS  Google Scholar 

  190. Farina F, Lambert E, Commeau L et al (2017) The stress response factor daf-16/FOXO is required for multiple compound families to prolong the function of neurons with Huntington’s disease. Sci Rep 7(1):1–5

    Google Scholar 

  191. Cheng P, Lee H, Lu P et al (2016) Resveratrol inhibition of Rac1-derived reactive oxygen species by AMPK decreases blood pressure in a fructose-induced rat model of hypertension. Sci Rep 6(1):25342

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Liu C, Sung H, Lin S et al (2017) Resveratrol attenuates ICAM-1 expression and monocyte adhesiveness to TNF-α-treated endothelial cells: evidence for an anti-inflammatory cascade mediated by the miR-221/222/AMPK/p38/NF-κB pathway. Sci Rep 7(1):44689

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Guo H, Zhang L (2017) Resveratrol provides benefits in mice with type II diabetes—induced chronic renal failure through AMPK signaling pathway. Exp Ther Med 16(1):333–341

    Google Scholar 

  194. Li J, Yu S, Ying J et al (2017) Resveratrol prevents ROS-induced apoptosis in high glucose-treated retinal capillary endothelial cells via the activation of AMPK/Sirt1/PGC-1α pathway. Oxid Med Cell Longev 2017:1–10

    CAS  Google Scholar 

  195. Fan Y, Chiu J, Liu J et al (2018) Resveratrol induces autophagy-dependent apoptosis in HL-60 cells. BMC Cancer 18(1):581

    PubMed  PubMed Central  Google Scholar 

  196. Madreiter-Sokolowski C, Sokolowski A, Graier W (2017) Dosis facit sanitatem—concentration-dependent effects of resveratrol on mitochondria. Nutrients 9(10):1117

    PubMed Central  Google Scholar 

  197. Jansen LA, Mirzaa GM, Ishak GE et al (2015) PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia. Brain 138(6):1613–1628

    PubMed  PubMed Central  Google Scholar 

  198. Shafi O (2016) Inverse relationship between Alzheimer’s disease and cancer, and other factors contributing to Alzheimer’s disease: a systematic review. BMC Neurol 16(1):236

    PubMed  PubMed Central  Google Scholar 

  199. Gu H, Li L, Cui C et al (2017) Overexpression of let-7a increases neurotoxicity in a PC12 cell model of Alzheimer's disease via regulating autophagy. Exp Ther Med 14(4):3688–3698

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Chen X, Zhao X, Cai H et al (2017) The role of sodium hydrosulfide in attenuating the aging process via PI3K/AKT and CaMKKβ/AMPK pathways. Redox Biol 12:987–1003

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Shi X, Wang J, Lei Y et al (2019) Research progress on the PI3K/AKT signaling pathway in gynecological cancer (review). Mol Med Rep 19(6):4529–4535

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Jha SK (2015) p38 MAPK and PI3K/AKT signalling cascades in Parkinson’s disease. Int J Mol Cell Med 4(2):67–86

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Fan S, Zhang B, Luan P et al (2015) PI3K/AKT/mTOR/p70S6K pathway is involved in A[beta]25-35-induced autophagy. Biomed Res Int. https://doi.org/10.1155/2015/161020

    Article  PubMed  PubMed Central  Google Scholar 

  204. Ma J, Wang Z, Liu C et al (2016) Pramipexole-induced hypothermia reduces early brain injury via PI3K/AKT/GSK3β pathway in subarachnoid hemorrhage rats. Sci Rep 6(1):1–11

    CAS  Google Scholar 

  205. Sánchez-Alegría K, Flores-León M, Avila-Muñoz E et al (2018) PI3K signaling in neurons: a central node for the control of multiple functions. Int J Mol Sci 19(12):3725

    PubMed Central  Google Scholar 

  206. Irvine M, Stewart A, Pedersen B et al (2018) Oncogenic PI3K/AKT promotes the step-wise evolution of combination BRAF/MEK inhibitor resistance in melanoma. Oncogenesis 7(9):72

    PubMed  PubMed Central  Google Scholar 

  207. Carnero A (2010) Akt-pathway_CurrPharmDesign_2010-v16-p34. Curr Pharm Des 16:34–44

    CAS  PubMed  Google Scholar 

  208. Jiang J, Wang Z, Qu M et al (2015) Stimulation of EphB2 attenuates tau phosphorylation through PI3K/Akt-mediated inactivation of glycogen synthase kinase-3β. Sci Rep 5(1):11765

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Ibrahim WW, Abdelkader NF, Ismail HM et al (2019) Escitalopram ameliorates cognitive impairment in D-galactose-injected ovariectomized rats: modulation of JNK, GSK-3β, and ERK signalling pathways. Sci Rep 9(1):1–4

    Google Scholar 

  210. Kong J, Zhang D, Li P et al (2015) Nicorandil inhibits oxidative stress and amyloid-β precursor protein processing in SH-SY5Y cells overexpressing APPsw. Int J Clin Exp Med 8(2):1966–1975

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Li C, Guo XD, Lei M, Wu JY, Jin JZ, Shi XF, Zhu ZY, Rukachaisirikul V, Hu LH, Wen TQ, Shen X (2017) Thamnolia vermicularis extract improves learning ability in APP/PS1 transgenic mice by ameliorating both Aβ and Tau pathologies. 中国药理学报: 英文版 38(1):9–28

    Google Scholar 

  212. Li Y, Yang W, Quinones-Hinojosa A et al (2016) Interference with protease-activated receptor 1 alleviates neuronal cell death induced by lipopolysaccharide-stimulated microglial cells through the PI3K/Akt pathway. Sci Rep 6(1):38247

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Zhao Y, Song W, Wang Z et al (2018) Resveratrol attenuates testicular apoptosis in type 1 diabetic mice: role of Akt-mediated Nrf2 activation and p62-dependent Keap1 degradation. Redox Biol 14:609–617

    CAS  PubMed  Google Scholar 

  214. Guo S, Wang J, Xu H et al (2019) Classic prescription, Kai-Xin-San, ameliorates Alzheimer’s disease as an effective multitarget treatment: from neurotransmitter to protein signaling pathway. Oxid Med Cell Longev 2019:1–14

    Google Scholar 

  215. Barone E, Di Domenico F, Mancuso C et al (2014) The Janus face of the heme oxygenase/biliverdin reductase system in Alzheimer disease: it's time for reconciliation. Neurobiol Dis 62:144–159

    CAS  PubMed  Google Scholar 

  216. Wen H, Fu Z, Wei Y et al (2018) Antioxidant activity and neuroprotective activity of stilbenoids in rat primary cortex neurons via the PI3K/Akt signalling pathway. Molecules 23(9):2328

    PubMed Central  Google Scholar 

  217. Wang Q (2015) Resveratrol attenuates intermittent hypoxia - induced insulin resistance in rats: involvement of sirtuin 1 and the phosphatidylinositol-4, 5-bisphosphate 3-kinase/AKT pathway. Mol Med Rep 11:151–158

    CAS  PubMed  Google Scholar 

  218. Hou Y, Wang K, Wan W et al (2018) Resveratrol provides neuroprotection by regulating the JAK2/STAT3/PI3K/AKT/mTOR pathway after stroke in rats. Genes Dis 5(3):245–255

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Ji HF, Shen L (2011) Berberine: a potential multipotent natural product to combat Alzheimer's disease. Molecules 16(8):6732–6740

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Bellaver B, Bobermin LD, Souza DG et al (2016) Signaling mechanisms underlying the glioprotective effects of resveratrol against mitochondrial dysfunction. Biochim Biophys Acta 1862(9):1827–1838

    CAS  PubMed  Google Scholar 

  221. Wang W, Li P, Xu J et al (2018) Resveratrol attenuates high glucose-induced nucleus pulposus cell apoptosis and senescence through activating the ROS-mediated PI3K/Akt pathway. Biosci Rep 38(2):R20171454

    Google Scholar 

  222. McGuire CM, Forgac M (2018) Glucose starvation increases V-ATPase assembly and activity in mammalian cells through AMP kinase and phosphatidylinositide 3-kinase/Akt signaling. J Biol Chem 293(23):9113–9123

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Mi X, Hou J, Wang Z et al (2018) The protective effects of maltol on cisplatin-induced nephrotoxicity through the AMPK-mediated PI3K/Akt and p53 signaling pathways. Sci Rep 8(1):1–2

    Google Scholar 

  224. Hong Z, Tian Y, Qi M et al (2016) Transient receptor potential vanilloid 4 inhibits γ-aminobutyric acid-activated current in hippocampal pyramidal neurons. Front Mol Neurosci 9:77

    PubMed  PubMed Central  Google Scholar 

  225. Chen X, Zhao X, Lan F et al (2017) Hydrogen sulphide treatment increases insulin sensitivity and improves oxidant metabolism through the CaMKKbeta-AMPK pathway in PA-induced IR C2C12 cells. Sci Rep 7(1):1–3

    Google Scholar 

  226. Cui J, Zhang F (2016) Macrophage migration inhibitory factor promotes cardiac stem cell proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK pathways. Int J Mol Med 37:1299–1309

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Lv C, Wu C, Zhou Y et al (2014) Alpha lipoic acid modulated high glucose-induced rat mesangial cell dysfunction via mTOR/p70S6K/4E-BP1 pathway. Int J Endocrinol 2014:1–14

    Google Scholar 

  228. Zhang C, Li C, Chen S et al (2017) Hormetic effect of panaxatriol saponins confers neuroprotection in PC12 cells and zebrafish through PI3K/AKT/mTOR and AMPK/SIRT1/FOXO3 pathways. Sci Rep 7(1):1–2

    Google Scholar 

  229. Kim N, Jeong S, Jing K et al (2015) Docosahexaenoic acid induces cell death in human non-small cell lung cancer cells by repressing mTOR via AMPK activation and PI3K/Akt inhibition. Biomed Res Int 2015:1–14

    Google Scholar 

  230. Mazibuko-Mbeje S, Dludla P, Roux C et al (2019) Aspalathin-enriched green rooibos extract reduces hepatic insulin resistance by modulating PI3K/AKT and AMPK pathways. Int J Mol Sci 20(3):633

    CAS  PubMed Central  Google Scholar 

  231. Mazibuko-Mbeje SE, Dludla PV, Johnson R et al (2019) Aspalathin, a natural product with the potential to reverse hepatic insulin resistance by improving energy metabolism and mitochondrial respiration. PLoS ONE 14(5):e216172

    Google Scholar 

Download references

Funding

This funding was supported by Traditional Chinese medicine scientific research project of the Guangdong Traditional Chinese Medicine Bureau [Grant Number 20162078], Guangdong Provincial Science and Technology Plan 2017 Science and Technology Development Fund [Grant Number 2017A020215061], Shandong Education Science Plan (CN) [Grant Number 2016105101290], Collaborative Innovation Center for Modern Science and Technology and Industrial Development of Jiangxi Traditional Medicine (CN) [Grant Number 2018A01029], Special fund for Zhanjiang Science and Technology Development [Grant Number 2018A206], National fund training project for young and middle-aged researchers of Guangdong Medical University [Grant Number 10264SG19055G].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Danli Kong or Haibing Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Yang, H., Xie, Y. et al. Research Progress on Alzheimer's Disease and Resveratrol. Neurochem Res 45, 989–1006 (2020). https://doi.org/10.1007/s11064-020-03007-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03007-0

Keywords

Navigation