[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Melatonin Protects Methamphetamine-Induced Neuroinflammation Through NF-κB and Nrf2 Pathways in Glioma Cell Line

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Methamphetamine (METH) is known as a toxin for neuronal and glial cells. Previous studies have found that METH-induced glial cell death and inflammation is mediated by oxidative stress. However, the exact mechanisms of the inflammatory response remain unclear. Therefore, we hypothesized that the activation of nuclear factor-κB (NF-κB) signaling, a key mediator of inflammation, and the inhibition of nuclear factor erythroid 2-related factor-2 (Nrf2) signaling, a regulator of the antioxidant response, would be significant events occurring in response to METH-induced inflammation in a rat glioma cell line (C6 cells). Our results show that METH increased the production of nitric oxide (NO) and up-regulated the expression of its main regulatory protein, inducible nitric oxide synthase (iNOS). METH also induced NF-κB activation by increasing inhibitory κBα (IκBα) degradation and translocation of the NF-κB (p65) subunit into the nucleus. Additionally, METH inhibited the activation of the Nrf2 pathway by decreasing the translocation of Nrf2 into the nucleus and also by suppressing the expression of heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase-1 (NQO-1), and glutamate-cysteine ligase catalytic subunit (γ-GCLC), resulting in the suppression of superoxide dismutase (SOD) activity. Pretreatment with melatonin effectively promoted Nrf2 activation and reversed the METH-induced NF-κB response. Melatonin increased the expression of HO-1, NQO-1, and γ-GCLC, resulting in increased SOD activity. In addition, melatonin also decreased IκBα degradation, translocation of the p65 subunit, and expression of iNOS, resulting in decreased NO production. Taken together, our results indicate that melatonin diminishes the proinflammatory mediator in METH-stimulated C6 cells by inhibiting NF-κB activation and inducing Nrf2-mediated HO-1, NQO-1, and γ-GCLC expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Halpin LE, Collins SA, Yamamoto BK (2014) Neurotoxicity of methamphetamine and 3,4-methylenedioxymethamphetamine. Life Sci 97(1):37–44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Panenka WJ, Procyshyn RM, Lecomte T, MacEwan GW, Flynn SW, Honer WG, Barr AM (2013) Methamphetamine use: a comprehensive review of molecular, preclinical and clinical findings. Drug Alcohol Depend 129(3):167–179

    Article  CAS  PubMed  Google Scholar 

  3. Snider SE, Hendrick ES, Beardsley PM (2013) Glial cell modulators attenuate methamphetamine self-administration in the rat. Eur J Pharmacol 701(1):124–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Robson MJ, Turner RC, Naser ZJ, McCurdy CR, Huber JD, Matsumoto RR (2013) SN79, a sigma receptor ligand, blocks methamphetamine-induced microglial activation and cytokine upregulation. Exp Neurol 247:134–142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Cadet JL, Krasnova IN (2009) Molecular bases of methamphetamine-induced neurodegeneration. Int Rev Neurobiol 88(9):101–119

    Article  CAS  PubMed  Google Scholar 

  6. Permpoonputtana K, Mukda S, Govitrapong P (2012) Effect of melatonin on D-amphetamine-induced neuroglial alterations in postnatal rat hippocampus and prefrontal cortex. Neurosci Lett 524(1):1–4

    Article  CAS  PubMed  Google Scholar 

  7. Tocharus J, Chongthammakun S, Govitrapong P (2008) Melatonin inhibits amphetamine-induced nitric oxide synthase mRNA overexpression in microglial cell lines. Neurosci Lett 439(2):134–137

    Article  CAS  PubMed  Google Scholar 

  8. Tocharus J, Khonthun C, Chongthammakun S, Govitrapong P (2010) Melatonin attenuates methamphetamine-induced overexpression of pro-inflammatory cytokines in microglial cell lines. J Pineal Res 48(4):347–352

    Article  CAS  PubMed  Google Scholar 

  9. Coelho-Santos V, Goncalves J, Fontes-Ribeiro C, Silva AP (2012) Prevention of methamphetamine-induced microglial cell death by TNF-alpha and IL-6 through activation of the JAK-STAT pathway. J Neuroinflammation 9(103):1742–2094

    Google Scholar 

  10. Li YH, Wang HJ, Qiao DF (2008) Effect of methamphetamine on the microglial cells and activity of nitric oxide synthases in rat striatum. Nan Fang Yi Ke Da Xue Xue Bao 28(10):1789–1791

    PubMed  Google Scholar 

  11. Friend D, Keefe K (2013) Glial reactivity in resistance to methamphetamine-induced neurotoxicity. J Neurochem 125(4):566–574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kelly K, Miller D, Bowyer J, O’Callaghan J (2012) Chronic exposure to corticosterone enhances the neuroinflammatory and neurotoxic responses to methamphetamine. J Neurochem 122(5):995–1009

    Article  CAS  PubMed  Google Scholar 

  13. Huang Y, Wu C, Lin T, Wang J (2009) Methamphetamine induces heme oxygenase-1 expression in cortical neurons and glia to prevent its toxicity. Toxicol Appl Pharmacol 240(3):315–326

    Article  CAS  PubMed  Google Scholar 

  14. Marshall JF, O’Dell SJ (2012) Methamphetamine influences on brain and behavior: unsafe at any speed? Trends Neurosci 35(9):536–545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ares-Santos S, Granado N, Moratalla R (2013) The role of dopamine receptors in the neurotoxicity of methamphetamine. J Intern Med 273(5):437–453

    Article  CAS  PubMed  Google Scholar 

  16. Thrash B, Thiruchelvan K, Ahuja M, Suppiramaniam V, Dhanasekaran M (2009) Methamphetamine-induced neurotoxicity: the road to Parkinson’s disease. Pharmacol Rep 61(6):966–977

    Article  CAS  PubMed  Google Scholar 

  17. Kita T, Takeshima M, Wagner GC, Hozumi H, Miyazaki I, Asanuma M (2008) New perspectives on the mechanism of methamphetamine-induced neurotoxicity. Nihon Shinkei Seishin Yakurigaku Zasshi 28(2):49–61

    CAS  PubMed  Google Scholar 

  18. Sekine Y, Ouchi Y, Sugihara G, Takei N, Yoshikawa E, Nakamura K, Iwata Y, Tsuchiya KJ, Suda S, Suzuki K, Kawai M, Takebayashi K, Yamamoto S, Matsuzaki H, Ueki T, Mori N, Gold MS, Cadet JL (2008) Methamphetamine causes microglial activation in the brains of human abusers. J Neurosci 28(22):5756–5761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Fantegrossi WE, Ciullo JR, Wakabayashi KT, De La Garza R II, Traynor JR, Woods JH (2008) A comparison of the physiological, behavioral, neurochemical and microglial effects of methamphetamine and 3,4-methylenedioxymethamphetamine in the mouse. Neuroscience 151(2):533–543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Thomas DM, Walker PD, Benjamins JA, Geddes TJ, Kuhn DM (2004) Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation. J Pharmacol Exp Ther 311(1):1–7

    Article  CAS  PubMed  Google Scholar 

  21. Lavoie MJ, Card JP, Hastings TG (2004) Microglial activation precedes dopamine terminal pathology in methamphetamine-induced neurotoxicity. Exp Neurol 187(1):47–57

    Article  CAS  PubMed  Google Scholar 

  22. Hoesel B, Schmid JA (2013) The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer 12(86):1476–4598

    Google Scholar 

  23. Niederberger E, Geisslinger G (2013) Proteomics and NF-kappaB: an update. Expert Rev Proteomics 10(2):189–204

    Article  CAS  PubMed  Google Scholar 

  24. Siomek A (2012) NF-kappaB signaling pathway and free radical impact. Acta Biochim Pol 59(3):323–331

    CAS  PubMed  Google Scholar 

  25. Gan L, Johnson JA (2013) Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases. Biochim Biophys Acta 13:366–369

    Google Scholar 

  26. Bryan HK, Olayanju A, Goldring CE, Park BK (2013) The Nrf2 cell defence pathway: keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol 85(6):705–717

    Article  CAS  PubMed  Google Scholar 

  27. Sandberg M, Patil J, D’Angelo B, Weber SG, Mallard C (2013) NRF2-regulation in brain health and disease: Implication of cerebral inflammation. Neuropharmacology 19:298–306

    Google Scholar 

  28. Zenkov NK, Menshchikova EB, Tkachev VO (2013) Keap1/Nrf2/ARE redox-sensitive signaling system as a pharmacological target. Biochemistry 78(1):19–36

    CAS  PubMed  Google Scholar 

  29. Sarlak G, Jenwitheesuk A, Chetsawang B, Govitrapong P (2013) Effects of melatonin on nervous system aging: neurogenesis and neurodegeneration. J Pharmacol Sci 123(1):9–24

    Article  CAS  PubMed  Google Scholar 

  30. Arushanian EB, Naumov SS (2013) Anti-inflammatory potential of melatonin. Klin Med 91(7):18–22

    CAS  Google Scholar 

  31. Jumnongprakhon P, Govitrapong P, Tocharus C, Tungkum W, Tocharus J (2014) Protective effect of melatonin on methamphetamine-induced apoptosis in glioma cell line. Neurotox Res 25(3):286–294

    Article  CAS  PubMed  Google Scholar 

  32. Parameyong A, Charngkaew K, Govitrapong P, Chetsawang B (2013) Melatonin attenuates methamphetamine-induced disturbances in mitochondrial dynamics and degeneration in neuroblastoma SH-SY5Y cells. J Pineal Res 55(3):313–323

    Article  CAS  PubMed  Google Scholar 

  33. Permpoonputtana K, Govitrapong P (2013) The anti-inflammatory effect of melatonin on methamphetamine-induced proinflammatory mediators in human neuroblastoma dopamine SH-SY5Y cell lines. Neurotox Res 23(2):189–199

    Article  CAS  PubMed  Google Scholar 

  34. Mukda S, Vimolratana O, Govitrapong P (2011) Melatonin attenuates the amphetamine-induced decrease in vesicular monoamine transporter-2 expression in postnatal rat striatum. Neurosci Lett 488(2):154–157

    Article  CAS  PubMed  Google Scholar 

  35. Nopparat C, Porter JE, Ebadi M, Govitrapong P (2010) The mechanism for the neuroprotective effect of melatonin against methamphetamine-induced autophagy. J Pineal Res 49(4):382–389

    Article  CAS  PubMed  Google Scholar 

  36. Suwanjang W, Phansuwan-Pujito P, Govitrapong P, Chetsawang B (2010) The protective effect of melatonin on methamphetamine-induced calpain-dependent death pathway in human neuroblastoma SH-SY5Y cultured cells. J Pineal Res 48(2):94–101

    Article  CAS  PubMed  Google Scholar 

  37. Kaewsuk S, Sae-ung K, Phansuwan-Pujito P, Govitrapong P (2009) Melatonin attenuates methamphetamine-induced reduction of tyrosine hydroxylase, synaptophysin and growth-associated protein-43 levels in the neonatal rat brain. Neurochem Int 55(6):397–405

    Article  CAS  PubMed  Google Scholar 

  38. Wisessmith W, Phansuwan-Pujito P, Govitrapong P, Chetsawang B (2009) Melatonin reduces induction of Bax, caspase and cell death in methamphetamine-treated human neuroblastoma SH-SY5Y cultured cells. J Pineal Res 46(4):433–440

    Article  CAS  PubMed  Google Scholar 

  39. Kongsuphol P, Mukda S, Nopparat C, Villarroel A, Govitrapong P (2009) Melatonin attenuates methamphetamine-induced deactivation of the mammalian target of rapamycin signaling to induce autophagy in SK-N-SH cells. J Pineal Res 46(2):199–206

    Article  CAS  PubMed  Google Scholar 

  40. Zhang M, An C, Gao Y, Leak RK, Chen J, Zhang F (2013) Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog Neurobiol 100:30–47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Granado N, Lastres-Becker I, Ares-Santos S, Oliva I, Martin E, Cuadrado A, Moratalla R (2011) Nrf2 deficiency potentiates methamphetamine-induced dopaminergic axonal damage and gliosis in the striatum. Glia 59(12):1850–1863

    Article  PubMed  Google Scholar 

  42. Turpaev KT (2013) Keap1-Nrf2 signaling pathway: mechanisms of regulation and role in protection of cells against toxicity caused by xenobiotics and electrophiles. Biochemistry 78(2):111–126

    CAS  PubMed  Google Scholar 

  43. Jones SR, Gainetdinov RR, Wightman RM, Caron MG (1998) Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter. J Neurosci 18(6):1979–1986

    CAS  PubMed  Google Scholar 

  44. Huang YN, Wang JY, Lee CT, Lin CH, Lai CC, Wang JY (2012) L-ascorbate attenuates methamphetamine neurotoxicity through enhancing the induction of endogenous heme oxygenase-1. Toxicol Appl Pharmacol 265(2):241–252

    Article  CAS  PubMed  Google Scholar 

  45. Cadet JL, Ordonez SV, Ordonez JV (1997) Methamphetamine induces apoptosis in immortalized neural cells: protection by the proto-oncogene, bcl-2. Synapse 25(2):176–184

    Article  CAS  PubMed  Google Scholar 

  46. Winek CL, Wahba WW, Winek CL Jr, Balzer TW (2001) Drug and chemical blood-level data 2001. Forensic Sci Int 122(2–3):107–123

    Article  CAS  PubMed  Google Scholar 

  47. Pacchioni AM, Vallone J, Melendez RI, Shih A, Murphy TH, Kalivas PW (2007) Nrf2 gene deletion fails to alter psychostimulant-induced behavior or neurotoxicity. Brain Res 5(1):26–35

    Article  Google Scholar 

  48. Wang J, Hao H, Yao L, Zhang X, Zhao S, Ling EA, Hao A, Li G (2012) Melatonin suppresses migration and invasion via inhibition of oxidative stress pathway in glioma cells. J Pineal Res 53(2):180–187

    Article  CAS  PubMed  Google Scholar 

  49. Das A, Belagodu A, Reiter RJ, Ray SK, Banik NL (2008) Cytoprotective effects of melatonin on C6 astroglial cells exposed to glutamate excitotoxicity and oxidative stress. J Pineal Res 45(2):117–124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Castro LM, Gallant M, Niles LP (2005) Novel targets for valproic acid: up-regulation of melatonin receptors and neurotrophic factors in C6 glioma cells. J Neurochem 95(5):1227–1236

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Faculty of Medicine, Chiang Mai University, Thailand and a research Grant from the Thailand Research Fund (TRF) through RMU 5480011 to JT and by research Grants from TRF (DPG5780001) and Mahidol University to PG.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiraporn Tocharus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jumnongprakhon, P., Govitrapong, P., Tocharus, C. et al. Melatonin Protects Methamphetamine-Induced Neuroinflammation Through NF-κB and Nrf2 Pathways in Glioma Cell Line. Neurochem Res 40, 1448–1456 (2015). https://doi.org/10.1007/s11064-015-1613-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1613-2

Keywords

Navigation