Abstract
For low-sulfidation epithermal deposits, which are globally significant sources of Au and Ag, we propose a new multi-stage ore-deposition mechanism initiated by cold groundwater. This cold-water trap was verified in the Philippine Sirawai Au–Ag deposit through geological modeling using the data of ore minerals, X-ray diffraction-based alteration minerals, and fluid-inclusions, and the numerical simulation of fluid flow using TOUGH2. Gold grades and Ag/Au ratios were especially focused on because they were characterized by various Au ore-deposition mechanisms. Initially, neutral-pH hydrothermal fluids at ~ 270 °C ascended through veins and encountered a shallow aquifer. The cooling of rising fluids by cold, shallow groundwater resulted in early-stage mineralization (Au ~ 1 g/t, Ag/Au ratio 4–89). Hydrothermal alteration halos were also generated at this stage by fluid flow from the veins into surrounding permeable zones (i.e., a shallow aquifer). The greatly decreased permeability of these alteration halos formed mushroom-shaped low-permeability alteration halos (LPAHs) around the veins. Middle-stage mineralization (Au ~ 26 g/t, Ag/Au ratio ≤ 10) occurred by the boiling of fluids when temperatures increased due to low permeability and insulating properties of the LPAHs. As the permeability of the LPAHs decreased further, hydrothermal brecciation occurred preferentially in horizontal brittle zones (i.e., the caps of the LPAH in the shallow aquifer). Late-stage mineralization (Au ~ 2 g/t, Ag/Au ratio ~ 30) then occurred by the boiling of fluids as the pressure decreased. Consequently, the cold-water trap mechanism is an innovative approach that clarifies mineralization in low-sulfidation epithermal Au deposits.
Similar content being viewed by others
References
André-Mayer, A.-S., Leroy, J. L., Bailly, L., Chauvet, A., Marcoux, E., Grancea, L., Llosa, F., & Rosas, J. (2002). Boiling and vertical mineralization zoning: A case study from the Apacheta low sulfidation epithermal gold–silver deposit, southern Peru. Mineralium Deposita, 37, 452–464. https://doi.org/10.1007/s00126-001-0247-2
Aurelio, M. A. (2000). Shear partitioning in an island arc setting: Constraints from Philippine Fault and recent GPS data. The Island Arc, 9(4), 585–598. https://doi.org/10.1111/j.1440-1738.2000.00304.x
Bakker, R. J. (2003). Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194(1–3), 3–23. https://doi.org/10.1016/S0009-2541(02)00268-1
Bodnar, R. J. (1993). Revised equation and table for determining the freezing point depression of H2O–NaCl solutions. Geochimica et Cosmochimica Acta, 57, 683–684. https://doi.org/10.1016/0016-7037(93)90378-A
Canet, C., Franco, S. I., Prol-Ledesma, R. M., González-Partida, E., & Villanueva-Estrada, R. E. (2011). A model of boiling for fluid inclusion studies: Application to the Bolaños Ag–Au–Pb–Zn epithermal deposit. Western Mexico. Journal of Geochemical Exploration, 110(2), 118–125. https://doi.org/10.1016/j.gexplo.2011.04.005
Cole, D. R., & Drummond, S. E. (1986). The effect of transport and boiling on Ag/Au rations in hydrothermal solutions: A preliminary assessment and possible implications for the formation of epithermal precious-metal ore deposits. Journal of Geochemical Exploration, 25(1–2), 45–79. https://doi.org/10.1016/0375-6742(86)90007-5
Cooke, D. R., Deyell, C. L., Waters, P. J., Gonzales, R. I., & Zaw, K. (2011). Evidence for magmatic-hydrothermal fluids and ore-forming processes in epithermal and porphyry deposits of the Baguio district Philippines. Economic Geology, 106(8), 1399–1424. https://doi.org/10.2113/econgeo.106.8.1399
Cooke, D. R., McPhail, D. C., & Bloom, M. S. (1996). Epithermal gold mineralization, Acupan Baguio district Philippine: Geology, mineralization, alteration, and the thermochemical environment of ore deposition. Economic Geology, 91(2), 243–272. https://doi.org/10.2113/gsecongeo.91.2.243
Cooke, D. R., & Simmons, S. F. (2000). Characteristics and genesis of epithermal gold deposits. Reviews in Economic Geology, 13, 221–244. https://www.segweb.org/store/SearchResults.aspx?Ca
Haas, J. L. (1971). The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure. Economic Geology, 66(6), 940–946. https://doi.org/10.2113/gsecongeo.66.6.940
Hedenquist, J. W., Arribas, R. A., & Gonzales-Urien, E. (2000). Exploration for epithermal gold deposits. Reviews in Economic Geology, 13, 245–277. https://www.segweb.org/store/SearchResults.aspx?Ca
Hedenquist, J. W., & Henley, R. W. (1985a). The importance of CO2 on freezing point measurements of fluid inclusions: Evidence from active geothermal systems and implications for epithermal ore deposition. Economic Geology, 80(5), 1379–1406. https://doi.org/10.2113/gsecongeo.80.5.1379
Hedenquist, J. W., & Henley, R. W. (1985b). Hydrothermal eruptions in the Waiotapu geothermal system, New Zealand: Their origin, associated breccias, and relation to precious metal mineralization. Economic Geology, 80(6), 1640–1668. https://doi.org/10.2113/gsecongeo.80.6.1640
Henley, R. W., & Ellis, A. J. (l983). Geothermal systems, ancient and modern. Earth Science Review, 19(1), l–50. https://doi.org/10.1016/0012-8252(83)90075-2.
Ingebritsen, S. E., Geiger, S., Hurwitz, S., & Driesner, T. (2010). Numerical simulation of magmatic hydrothermal systems. Reviews of Geophysics, 48(RG1002), 33. https://doi.org/10.1029/2009RG000287.
Itoi, R., Kumamoto, Y., Tanaka, T., & Takayama, J. (2010). History matching simulation of the Ogiri geothermal field, Japan. Proceedings World Geothermal Congress, 2010, 25–29.
Jimenez, F. A., Jr., Yumul, G. P., Jr., Maglambayan, V. B., & Tamayo, R. A., Jr. (2002). Shallow to near-surface, vein-type epithermal gold mineralization at Lalab in the Sibutad gold deposit, Zamboanga del Norte, Mindanao. Philippines. Journal of Asian Earth Science, 21(2), 119–133. https://doi.org/10.1016/S1367-9120(02)00024-X
John, D.A., Vikre, P.G., du Bray, E.A., Blakely, R.J., Fey, D.L., Rockwell, B.W., Mauk, J.L., Anderson, E.D., & Graybeal, F.T. (2018). Descriptive models for epithermal gold-silver deposits. Scientific investigations report 2010–5070–Q, U.S. Geological Survey, 214 pp. https://doi.org/10.3133/sir20105070Q
John, D.A., & Mauk, J.L. (2018). Chapter E. Regional environment (in Descriptive models for epithermal gold-silver deposits). Scientific investigations report 2010–5070–Q, U.S. Geological Survey, 17–41. https://doi.org/10.3133/sir20105070Q
Kato, H., Ariki, K., Kudo, S., & Abe, Y. (2006). Reservoir modeling of the Appi geothermal field, geothermal development promotion survey NEDO. Journal of Geotherm. Research Society Japan, 28(1), 19–36. (in Japanese with English abstract). https://doi.org/10.11367/grsj1979.28.19
Meteoblue (2020). https://www.meteoblue.com/en/weather/historyclimate/climatemodelled/siraway_philippines_1686047.
Mitchell, A. H. G., & Leach, T. M. (1991). Epithermal gold in the Philippines: Island arc metallogenesis, geothermal systems and geology (p. 457). Academic Press.
Mohan, C., Western, A. W., Wei, Y., & Saft, M. (2018). Predicting groundwater recharge for varying land cover and climate conditions–a global meta-study. Hydrology and Earth System Sciences, 22, 2689–2703. https://doi.org/10.5194/hess-22-2689-2018
Moncada, D., Mutchler, S., Nieto, A., Reynolds, T. J., Rimstidt, J. D., & Bodnar, R. J. (2012). Mineral textures and fluid inclusion petrography of the epithermal Ag–Au deposits at Guanajuato, Mexico: Application to exploration. Journal of Geochemical Exploration, 114, 20–35. https://doi.org/10.1016/j.gexplo.2011.12.001
NEDO (New Energy and Industrial Technology Development Organization, Japan), (1993). Geothermal development promotion survey in Hachijojima area, 1992 fiscal year, 1202 pp. (in Japanese).
Ni, P., Pan, J. Y., Huang, B., Wang, G. G., Xiang, H. L., Yang, Y. L., & Bao, T. (2018). Geology, ore-forming fluid and genesis of the Qiucun gold deposit: Implication for mineral exploration at Dehua prospecting region. SE China. Journal of Geochemical Exploration, 195, 3–15. https://doi.org/10.1016/j.gexplo.2018.03.018
Potter, R. W., II. (1977). Pressure corrections for fluid-inclusion homogenization temperatures based on the volumetric properties of the system NaCl–H2O. Journal of Research of the US Geological Survey, 5(5), 603–607.
Pruess, K., Oldenburg, C., & Moridis, G. (1999). TOUGH2 User’s Guide, Version 2.0 (p. 198). Earth Sciences Division.
Pubellier, M., Quebral, R., Rangin, C., Deffontaines, B., Muller, C., Butterlin, J., & Manzano, J. (1991). The mindanao collision zone: A soft collision event within a continuous neogene strike-slip setting. Journal of Southeast Asian Earth Science, 6(3–4), 239–248. https://doi.org/10.1016/0743-9547(91)90070-E
Reyes, A. G. (1990). Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment. Journal of Volcanology and Geothermal Research, 43(1–4), 279–309. https://doi.org/10.1016/0377-0273(90)90057-M
Roedder, E., & Bodnar, R. J. (1980). Geologic pressure determinations from fluid inclusion studies. Annual Review of Earth and Planetary Sciences, 8(1), 263–301. https://doi.org/10.1146/annurev.ea.08.050180.001403
Rowland, J. V., & Simmons, S. F. (2012). Hydrologic, magmatic, and tectonic controls on hydrothermal flow, Taupo volcanic zone, New Zealand: Implications for the formation of epithermal vein deposits. Economic Geology, 107(3), 427–457. https://doi.org/10.2113/econgeo.107.3.427
Sanchez-Alfaro, P., Reich, M., Driesner, T., Cembrano, J., Arancibia, G., Pérez-Flores, P., Heinrich, C.A., Rowland, J., Tardani, D., Lange, D., & Campos, E. (2016). The optimal windows for seismically enhanced gold precipitation in the epithermal environment. Ore Geology Reviews, l79: 463–473. https://doi.org/10.1016/j.oregeorev.2016.06.005
Schardt, C., & Large, R. R. (2009). New insights into the genesis of volcanic-hosted massive sulfide deposits on the seafloor from numerical modeling studies. Ore Geology Reviews, 35(3–4), 333–351. https://doi.org/10.1016/j.oregeorev.2008.11.008
Sherlock, R. L., & Barrett, T. J. (2004). Geology and volcanic stratigraphy of the Canatuan and Malusok volcanogenic massive sulfide deposits, southwestern Mindanao Philippines. Mineralium Deposita, 39, 1–20. https://doi.org/10.1007/s00126-003-0350-7
Shimizu, T. (2014). Reinterpretation of quartz textures in terms of hydrothermal fluid evolution at the Koryu Au–Ag deposit Japan. Economic Geology, 109(7), 2051–2065. https://doi.org/10.2113/econgeo.109.7.2051
Sibson, R. H. (1987). Earthquake rupturing as a hydrothermal mineralizing agent in hydrothermal systems. Geology, 15, 701–704. https://doi.org/10.1007/978-94-011-1614-5_42
Sillitoe, R. H., & Hedenquist, J. W. (2003). Linkages between volcanotectonic settings, ore fluid compositions, and epithermal precious metal deposits. Society of Economic Geologists Special Publication, 10, 315–343.
Simmons, S.F., White, N.C., & John, D.A. (2005). Geological characteristics of epithermal precious and base metal deposits. Economic Geology, 100th Anniversary Volume, 485–522. https://doi.org/10.5382/AV100.16
Simmons, S. F., & Browne, P. R. L. (2000). Hydrothermal minerals and precious metals in the Broadlands-Ohaaki geothermal system: Implications for understanding low-sulfidation epithermal environments. Economic Geology, 95(5), 971–999. https://doi.org/10.2113/gsecongeo.95.5.971
Stimac, Goff, F., and Goff, C.J. (2015). Chapter 46 Intrusion Related Geothermal Systems. The Encyclopedia of Volcanoes Second Edition, 799–822. https://doi.org/10.1016/B978-0-12-385938-9.00046-8
Swinkels, L., Rossberg, C., Schulz-Isenbeck, J., Burisch, M., Frenzel, M., & Gutzmer, J. (2019). Mineralogical zoning within the Freiberg epithermal Ag–(Au)–Pb–Zn–Cu system, Germany. Conference: 15th Biennial Meeting of the Society for Geology Applied to Mineral Deposits At: Glasgow, Scotland, pp. 342–345.
Takahashi, H. (1996). Classification of cap rocks in geothermal systems. Journal of Geothermal Research Societ Japan, 18(1), 1–15. (in Japanese with English abstract). https://doi.org/10.11367/grsj1979.18.1
Takahashi, H. (1995). Alteration cap rock formation model – A case study Hosokura ore deposits in northeastern Japan –. Journal of Geothermal Research Society Japan, 17(4), 271–284. (in Japanese with English abstract). https://doi.org/10.11367/grsj1979.17.271
Takahashi, H. (1988). Wall-rock alteration and ore-formation model of Hosokura Pb–Zn ore deposits Japan. Mining Geology, 38(4), 335–346. (in Japanese with English abstract). https://doi.org/10.11456/shigenchishitsu1951.38.335
Takahashi, H., Tomita, S. A., Koike, K., & Yoshiyama, H. (2021). A cold-water trap as an essential process for the generation of low-sulfidation epithermal deposits: Geological and numerical studies of the Hosokura deposit, northern Japan. Ore Geology Reviews, 128, 1–22. https://doi.org/10.1016/j.oregeorev.2020.103780
Takatori, I., & Nouno, M. (1985). Geochemical characteristics of Chitose Fukujinzawa ore deposit. An approach to exploration for gold–silver deposits (in Gold and silver ore in Japan). Mining and Metallurgical Institute of Japan, 3, 19–60. (in Japanese).
Takenouchi, S. (1983). Fluid inclusion study of the Nansatsu-type gold deposits Southern Kyushu. Mining Geology, 33(4), 237–245. (in Japanese with English abstract). https://doi.org/10.11456/shigenchishitsu1951.33.237
Tomita, S. A., Koike, K., Goto, T., & Suzuki, K. (2020). Numerical simulation-based clarification of a fluid-flow system in a seafloor hydrothermal vent area in the middle Okinawa trough. Geophysical Research Letter, 47(20). https://doi.org/10.1029/2020GL088681
Vikre, P. G. (1989). Fluid-mineral relations in the Comstock Lode. Economic Geology, 84(6), 1574–1613. https://doi.org/10.2113/gsecongeo.84.6.1574
White, N. C., & Hedenquist, J. W. (1995). Epithermal gold deposits: Styles, characteristics, and exploration. SEG Newsletter, 23(1), 9–13.
Wilkinson, J. J. (2001). Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1–4), 229–272. https://doi.org/10.1016/S0024-4937(00)00047-5
Yoshida, Y. (1991). Geochemistry of the Nigorikawa geothermal system, southwest Hokkaido Japan. Geochemical Journal, 25(4), 203–222. https://doi.org/10.2343/geochemj.25.203
Yoshiyama, H. (2005). Evolution of volcanic and hydrothermal activities based on the thermo-luminescence ages at geothermal fields. Doctoral thesis, Kyushu University, Fukuoka, Japan, 92 pp.
Yumul, G. P., Jr., Dimalanta, C. B., Marquez, E. J., & Queaño, K. L. (2009). Onland signatures of the Palawan microcontinental block and Philippine mobile belt collision and crustal growth process: A review. Journal of Asian Earth Science, 34(5), 610–623. https://doi.org/10.1016/j.jseaes.2008.10.002
Yumul, G. P., Jr., Dimalanta, C. B., Tamayo, R. A., Jr., Maury, R. C., Bellon, H., Polvé, M., Maglambayan, V. B., Querubin, C. L., & Cotten, J. (2004). Geology of the zamboanga peninsula, mindanao, philippines: An enigmatic South China continental fragment? Geological Society Spece Publications, 226, 289–312. https://doi.org/10.1144/GSL.SP.2004.226.01.16
Acknowledgments
We would like to appreciate leader Mr. Brian Esber and the Sirawai exploration team. To ensure low-cost exploration, the Sirawai exploration laboratory performed accurately the chemical analyses of the drill cores. Our sincere gratitude is extended to mineralogist Yasuhiro Takai and Sachiko Toki, Enecom Co., Ltd., for their assistance in observing the boiling phenomena in fluid inclusions under the microscope, and the Dr. Jonathan Naden and two anonymous reviewers for essential and constructive comments and suggestions that improved clarity of this manuscript largely.
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
Grades of Au, Ag, Cu, Pb, Zn, and Ag/Au and Pb/Cu ratios in the three mineralization stages at the 45 intersections with Au–Ag veins, obtained from the test pits and drill holes in the Sirawai deposit.
Early-Stage Ore
No | Number of intersection with vein | Elevation (m a.s.l.) | Width of ore (m) | Au (ppb) | Ag (ppb) | Ag/Au ratio | Cu (ppm) | Pb (ppm) | Zn (ppm) | Pb/Cu ratio | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | V1 | −1 | 301 | 1.5 | 0.6 | 22.4 | 38 | 527 | 386 | 386 | 0.9 |
2 | −2 | 313 | 2.5 | 0.5 | 24.6 | 45 | 885 | 531 | 531 | 1.9 | |
3 | −3 | 309 | 1.5 | 0.6 | 27.2 | 45 | 607 | 652 | 652 | 1.5 | |
4 | V2 | −1 | 293 | 2.0 | 0.5 | 15.5 | 30 | 1499 | 564 | 564 | 1.6 |
5 | −2 | 298 | 3.5 | 0.9 | 44.8 | 47 | 4715 | 669 | 669 | 1.2 | |
6 | −3 | 320 | 1.5 | 0.6 | 39.0 | 66 | 1196 | 2829 | 2829 | 3.5 | |
7 | −4 | 300 | 1.5 | 0.7 | 23.4 | 33 | 8320 | 3162 | 3162 | 0.2 | |
8 | −5 | 308 | 2.6 | 0.9 | 37.7 | 43 | 3795 | 14,501 | 14,501 | 1.7 | |
9 | −6 | 308 | 3.0 | 0.8 | 53.0 | 63 | 4715 | 5108 | 5108 | 1.3 | |
10 | −7 | 308 | 1.5 | 0.6 | 45.0 | 78 | 1939 | 631 | 631 | 6.5 | |
11 | V3 | −1 | 291 | 1.7 | 0.6 | 22.5 | 39 | 2654 | 2498 | 2498 | 1.0 |
12 | −2 | 323 | 3.5 | 0.7 | 40.6 | 62 | 1010 | 778 | 778 | 1.7 | |
13 | −3 | 323 | 3.0 | 0.8 | 49.8 | 60 | 517 | 2022 | 2022 | 4.7 | |
14 | −4 | 314 | 3.4 | 1.4 | 99.0 | 72 | 3148 | 1785 | 1785 | 1.5 | |
15 | −5 | 301 | 2.0 | 1.6 | 62.0 | 40 | 2683 | 8445 | 8445 | 1.9 | |
16 | −6 | 284 | 1.5 | 1.1 | 20.4 | 19 | 708 | 403 | 403 | 0.7 | |
17 | V4 | −1 | 284 | 1.0 | 0.8 | 28.6 | 36 | 1911 | 1034 | 1034 | 1.0 |
18 | −2 | 292 | 1.5 | 1.0 | 33.3 | 33 | 2766 | 1323 | 1323 | 0.8 | |
19 | −3 | 284 | 1.8 | 1.4 | 49.4 | 36 | 3131 | 7605 | 7605 | 0.8 | |
20 | −4 | 323 | 2.5 | 1.1 | 76.0 | 69 | 1481 | 1329 | 1329 | 1.4 | |
21 | −5 | 305 | 0.5 | 0.6 | 28.0 | 45 | 2284 | 648 | 648 | 1.1 | |
22 | −6 | 318 | 1.5 | 0.5 | 32.8 | 62 | 1882 | 1259 | 1259 | 1.5 | |
23 | V5 | −1 | 278 | 1.7 | 0.9 | 16.0 | 18 | 2641 | 1829 | 1829 | 0.6 |
24 | −2 | 292 | 1.7 | 0.7 | 7.5 | 11 | 4267 | 4019 | 4019 | 0.7 | |
25 | −3 | 325 | 2.5 | 0.6 | 52.6 | 89 | 2980 | 2800 | 2800 | 1.7 | |
26 | −4 | 310 | 2.5 | 1.1 | 46.9 | 44 | 3324 | 13,567 | 13,567 | 7.0 | |
27 | −5 | 298 | 1.0 | 1.0 | 28.5 | 29 | 442 | 592 | 592 | 0.7 | |
28 | −6 | 295 | 1.7 | 0.8 | 16.0 | 19 | 2100 | 1965 | 1965 | 0.8 | |
29 | −7 | 296 | 3.4 | 1.4 | 30.3 | 21 | 9735 | 1900 | 4961 | 0.2 | |
30 | V5 | −8 | 301 | 1.0 | 0.6 | 13.2 | 21 | 7306 | 3887 | 5201 | 0.5 |
31 | −9 | 285 | 1.0 | 0.8 | 11.6 | 14 | 1888 | 1018 | 2369 | 0.5 | |
32 | −10 | 295 | 1.7 | 1.4 | 44.5 | 31 | 5612 | 7129 | 5321 | 1.3 | |
33 | −11 | 302 | 1.0 | 0.5 | 27.0 | 50 | 543 | 876 | 654 | 1.6 | |
34 | V6 | −1 | 325 | 1.0 | 0.8 | 59.0 | 72 | 972 | 1463 | 1216 | 1.5 |
35 | −2 | 326 | 3.0 | 0.7 | 47.1 | 71 | 2248 | 3329 | 1180 | 1.5 | |
36 | −3 | 318 | 1.5 | 0.7 | 45.5 | 64 | 1293 | 6773 | 5069 | 5.2 | |
37 | −4 | 313 | 3.0 | 1.8 | 134.8 | 76 | 872 | 5985 | 1103 | 6.9 | |
38 | −5 | 271 | 1.0 | 1.1 | 5.0 | 4 | 374 | 416 | 524 | 1.1 | |
39 | −6 | 298 | 1.0 | 0.6 | 35.1 | 57 | 650 | 790 | 754 | 1.2 | |
40 | −7 | 295 | 1.0 | 0.6 | 21.9 | 37 | 1006 | 1148 | 594 | 1.1 | |
41 | V7 | −1 | 322 | 1.0 | 0.5 | 30.7 | 63 | 1845 | 2830 | 2313 | 1.5 |
42 | −2 | 323 | 3.0 | 0.7 | 48.3 | 73 | 480 | 5408 | 1684 | 11.3 | |
43 | −3 | 309 | 1.0 | 0.4 | 16.2 | 46 | 16,935 | 1221 | 2294 | 0.1 | |
44 | −4 | 303 | 4.0 | 1.0 | 35.3 | 34 | 277 | 564 | 241 | 2.0 | |
45 | −5 | 285 | 2.0 | 1.1 | 18.7 | 17 | 2191 | 1109 | 1227 | 0.5 |
Middle-Stage Ore
No | Number of intersection with vein | Elevation (m a.s.l.) | Width of ore (m) | Au (ppb) | Ag (ppb) | Ag/Au ratio | Cu (ppm) | Pb (ppm) | Zn (ppm) | Pb/Cu ratio | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | V1 | −1 | 299 | 1.5 | 23.9 | 89.2 | 4 | 1261 | 1218 | 1320 | 1.0 |
2 | −3 | 311 | 1.5 | 2.8 | 16.7 | 6 | 625 | 770 | 799 | 1.2 | |
3 | V2 | −6 | 309 | 0.5 | 21.4 | 222.9 | 10 | 3797 | 7170 | 6211 | 1.9 |
4 | V3 | −3 | 325 | 1.5 | 3.2 | 20.9 | 7 | 1853 | 3845 | 2500 | 2.1 |
5 | −4 | 315 | 0.5 | 3.2 | 24.7 | 8 | 2880 | 2545 | 936 | 0.9 | |
6 | V4 | −1 | 292 | 0.5 | 20.2 | 411.1 | 20 | 10,120 | 40,940 | 61,220 | 4.0 |
7 | −4 | 326 | 1.0 | 36.5 | 98.7 | 3 | 2601 | 7580 | 6198 | 2.9 | |
8 | −5 | 304 | 0.5 | 5.0 | 15.0 | 3 | 1525 | 1993 | 1220 | 1.3 | |
9 | V5 | −1 | 277 | 0.9 | 22.2 | 123.0 | 6 | 3048 | 3591 | 1434 | 1.2 |
10 | −2 | 290 | 1.7 | 14.7 | 379.2 | 26 | 6501 | 31,905 | 69,775 | 4.9 | |
11 | −3 | 328 | 0.5 | 2.0 | 13.0 | 6 | 2446 | 2283 | 1102 | 0.9 | |
12 | −5 | 296 | 1.5 | 54.9 | 2370.4 | 43 | 1811 | 15,348 | 3406 | 8.5 | |
13 | −8 | 300 | 0.5 | 1.8 | 53.1 | 29 | 3507 | 8088 | 7535 | 2.3 | |
14 | −9 | 286 | 0.5 | 5.4 | 100.6 | 19 | 6867 | 31,760 | 34,955 | 4.6 | |
15 | −10 | 296 | 0.9 | 183.3 | 169.0 | 1 | 6374 | 5811 | 2533 | 0.9 | |
16 | V6 | −3 | 315 | 0.5 | 2.3 | 22.0 | 9 | 1232 | 3207 | 3178 | 2.6 |
17 | −5 | 273 | 1.0 | 25.4 | 26.5 | 1 | 2490 | 1066 | 1156 | 0.4 | |
18 | V7 | −4 | 305 | 2.0 | 6.3 | 33.0 | 5 | 974 | 1331 | 807 | 1.4 |
Late-Stage Ore
No | Number of intersection with vein | Elevation (m a.s.l.) | Width of ore (m) | Au (ppb) | Ag (ppb) | Ag/Au ratio | Cu (ppm) | Pb (ppm) | Zn (ppm) | Pb/Cu ratio | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | V2 | −5 | 307 | 0.9 | 1.3 | 43.0 | 33 | 5582 | 11,500 | 8460 | 2.1 |
2 | V4 | −1 | 286 | 1.5 | 1.8 | 59.5 | 34 | 5146 | 7785 | 9691 | 1.5 |
3 | −2 | 293 | 0.5 | 1.8 | 44.2 | 24 | 5559 | 16,200 | 3098 | 2.9 | |
4 | −3 | 285 | 1.7 | 3.3 | 103.0 | 31 | 8397 | 4489 | 13,580 | 0.5 | |
5 | −4 | 327 | 0.5 | 3.5 | 85.3 | 24 | 1685 | 2633 | 1132 | 1.6 | |
6 | V5 | −1 | 276 | 0.9 | 0.7 | 13.7 | 20 | 5483 | 1342 | 1880 | 0.2 |
7 | −2 | 286 | 0.9 | 0.8 | 23.6 | 30 | 1095 | 1896 | 14,875 | 1.7 | |
8 | −6 | 292 | 0.9 | 6.4 | 180.0 | 28 | 15,420 | 20,650 | 22,655 | 1.3 | |
9 | −7 | 293 | 1.7 | 3.0 | 62.8 | 21 | 7698 | 2620 | 2111 | 0.3 | |
10 | −8 | 295 | 0.5 | 1.3 | 23.1 | 18 | 2322 | 2728 | 6040 | 1.2 | |
11 | V6 | −2 | 323 | 1.5 | 0.9 | 20.3 | 23 | 3272 | 5759 | 2535 | 1.8 |
12 | V7 | −1 | 320 | 0.5 | 3.2 | 60.3 | 19 | 11,870 | 3403 | 3476 | 0.3 |
13 | −2 | 320 | 2.0 | 1.8 | 58.6 | 32 | 1885 | 3494 | 12,679 | 1.9 | |
14 | −5 | 283 | 1.0 | 1.9 | 53.9 | 28 | 3218 | 1311 | 816 | 0.4 |
Rights and permissions
About this article
Cite this article
Takahashi, H., Tomita, S.A., Koike, K. et al. Geological Modeling and Numerical Simulation of Cold-Water Trap in the Low-Sulfidation Epithermal Sirawai Au–Ag Deposit, Mindanao, Philippines. Nat Resour Res 31, 67–98 (2022). https://doi.org/10.1007/s11053-021-09978-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11053-021-09978-3