[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Geological Modeling and Numerical Simulation of Cold-Water Trap in the Low-Sulfidation Epithermal Sirawai Au–Ag Deposit, Mindanao, Philippines

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

For low-sulfidation epithermal deposits, which are globally significant sources of Au and Ag, we propose a new multi-stage ore-deposition mechanism initiated by cold groundwater. This cold-water trap was verified in the Philippine Sirawai Au–Ag deposit through geological modeling using the data of ore minerals, X-ray diffraction-based alteration minerals, and fluid-inclusions, and the numerical simulation of fluid flow using TOUGH2. Gold grades and Ag/Au ratios were especially focused on because they were characterized by various Au ore-deposition mechanisms. Initially, neutral-pH hydrothermal fluids at ~ 270 °C ascended through veins and encountered a shallow aquifer. The cooling of rising fluids by cold, shallow groundwater resulted in early-stage mineralization (Au ~ 1 g/t, Ag/Au ratio 4–89). Hydrothermal alteration halos were also generated at this stage by fluid flow from the veins into surrounding permeable zones (i.e., a shallow aquifer). The greatly decreased permeability of these alteration halos formed mushroom-shaped low-permeability alteration halos (LPAHs) around the veins. Middle-stage mineralization (Au ~ 26 g/t, Ag/Au ratio ≤ 10) occurred by the boiling of fluids when temperatures increased due to low permeability and insulating properties of the LPAHs. As the permeability of the LPAHs decreased further, hydrothermal brecciation occurred preferentially in horizontal brittle zones (i.e., the caps of the LPAH in the shallow aquifer). Late-stage mineralization (Au ~ 2 g/t, Ag/Au ratio ~ 30) then occurred by the boiling of fluids as the pressure decreased. Consequently, the cold-water trap mechanism is an innovative approach that clarifies mineralization in low-sulfidation epithermal Au deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

Download references

Acknowledgments

We would like to appreciate leader Mr. Brian Esber and the Sirawai exploration team. To ensure low-cost exploration, the Sirawai exploration laboratory performed accurately the chemical analyses of the drill cores. Our sincere gratitude is extended to mineralogist Yasuhiro Takai and Sachiko Toki, Enecom Co., Ltd., for their assistance in observing the boiling phenomena in fluid inclusions under the microscope, and the Dr. Jonathan Naden and two anonymous reviewers for essential and constructive comments and suggestions that improved clarity of this manuscript largely.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Takahashi.

Appendix

Appendix

Grades of Au, Ag, Cu, Pb, Zn, and Ag/Au and Pb/Cu ratios in the three mineralization stages at the 45 intersections with Au–Ag veins, obtained from the test pits and drill holes in the Sirawai deposit.

Early-Stage Ore

No

Number of intersection with vein

Elevation (m a.s.l.)

Width of ore (m)

Au (ppb)

Ag (ppb)

Ag/Au ratio

Cu (ppm)

Pb (ppm)

Zn (ppm)

Pb/Cu ratio

1

V1

−1

301

1.5

0.6

22.4

38

527

386

386

0.9

2

 

−2

313

2.5

0.5

24.6

45

885

531

531

1.9

3

 

−3

309

1.5

0.6

27.2

45

607

652

652

1.5

4

V2

−1

293

2.0

0.5

15.5

30

1499

564

564

1.6

5

 

−2

298

3.5

0.9

44.8

47

4715

669

669

1.2

6

 

−3

320

1.5

0.6

39.0

66

1196

2829

2829

3.5

7

 

−4

300

1.5

0.7

23.4

33

8320

3162

3162

0.2

8

 

−5

308

2.6

0.9

37.7

43

3795

14,501

14,501

1.7

9

 

−6

308

3.0

0.8

53.0

63

4715

5108

5108

1.3

10

 

−7

308

1.5

0.6

45.0

78

1939

631

631

6.5

11

V3

−1

291

1.7

0.6

22.5

39

2654

2498

2498

1.0

12

 

−2

323

3.5

0.7

40.6

62

1010

778

778

1.7

13

 

−3

323

3.0

0.8

49.8

60

517

2022

2022

4.7

14

 

−4

314

3.4

1.4

99.0

72

3148

1785

1785

1.5

15

 

−5

301

2.0

1.6

62.0

40

2683

8445

8445

1.9

16

 

−6

284

1.5

1.1

20.4

19

708

403

403

0.7

17

V4

−1

284

1.0

0.8

28.6

36

1911

1034

1034

1.0

18

 

−2

292

1.5

1.0

33.3

33

2766

1323

1323

0.8

19

 

−3

284

1.8

1.4

49.4

36

3131

7605

7605

0.8

20

 

−4

323

2.5

1.1

76.0

69

1481

1329

1329

1.4

21

 

−5

305

0.5

0.6

28.0

45

2284

648

648

1.1

22

 

−6

318

1.5

0.5

32.8

62

1882

1259

1259

1.5

23

V5

−1

278

1.7

0.9

16.0

18

2641

1829

1829

0.6

24

 

−2

292

1.7

0.7

7.5

11

4267

4019

4019

0.7

25

 

−3

325

2.5

0.6

52.6

89

2980

2800

2800

1.7

26

 

−4

310

2.5

1.1

46.9

44

3324

13,567

13,567

7.0

27

 

−5

298

1.0

1.0

28.5

29

442

592

592

0.7

28

 

−6

295

1.7

0.8

16.0

19

2100

1965

1965

0.8

29

 

−7

296

3.4

1.4

30.3

21

9735

1900

4961

0.2

30

V5

−8

301

1.0

0.6

13.2

21

7306

3887

5201

0.5

31

 

−9

285

1.0

0.8

11.6

14

1888

1018

2369

0.5

32

 

−10

295

1.7

1.4

44.5

31

5612

7129

5321

1.3

33

 

−11

302

1.0

0.5

27.0

50

543

876

654

1.6

34

V6

−1

325

1.0

0.8

59.0

72

972

1463

1216

1.5

35

 

−2

326

3.0

0.7

47.1

71

2248

3329

1180

1.5

36

 

−3

318

1.5

0.7

45.5

64

1293

6773

5069

5.2

37

 

−4

313

3.0

1.8

134.8

76

872

5985

1103

6.9

38

 

−5

271

1.0

1.1

5.0

4

374

416

524

1.1

39

 

−6

298

1.0

0.6

35.1

57

650

790

754

1.2

40

 

−7

295

1.0

0.6

21.9

37

1006

1148

594

1.1

41

V7

−1

322

1.0

0.5

30.7

63

1845

2830

2313

1.5

42

 

−2

323

3.0

0.7

48.3

73

480

5408

1684

11.3

43

 

−3

309

1.0

0.4

16.2

46

16,935

1221

2294

0.1

44

 

−4

303

4.0

1.0

35.3

34

277

564

241

2.0

45

 

−5

285

2.0

1.1

18.7

17

2191

1109

1227

0.5

Middle-Stage Ore

No

Number of intersection with vein

Elevation (m a.s.l.)

Width of ore (m)

Au (ppb)

Ag (ppb)

Ag/Au ratio

Cu (ppm)

Pb (ppm)

Zn (ppm)

Pb/Cu ratio

1

V1

−1

299

1.5

23.9

89.2

4

1261

1218

1320

1.0

2

 

−3

311

1.5

2.8

16.7

6

625

770

799

1.2

3

V2

−6

309

0.5

21.4

222.9

10

3797

7170

6211

1.9

4

V3

−3

325

1.5

3.2

20.9

7

1853

3845

2500

2.1

5

 

−4

315

0.5

3.2

24.7

8

2880

2545

936

0.9

6

V4

−1

292

0.5

20.2

411.1

20

10,120

40,940

61,220

4.0

7

 

−4

326

1.0

36.5

98.7

3

2601

7580

6198

2.9

8

 

−5

304

0.5

5.0

15.0

3

1525

1993

1220

1.3

9

V5

−1

277

0.9

22.2

123.0

6

3048

3591

1434

1.2

10

 

−2

290

1.7

14.7

379.2

26

6501

31,905

69,775

4.9

11

 

−3

328

0.5

2.0

13.0

6

2446

2283

1102

0.9

12

 

−5

296

1.5

54.9

2370.4

43

1811

15,348

3406

8.5

13

 

−8

300

0.5

1.8

53.1

29

3507

8088

7535

2.3

14

 

−9

286

0.5

5.4

100.6

19

6867

31,760

34,955

4.6

15

 

−10

296

0.9

183.3

169.0

1

6374

5811

2533

0.9

16

V6

−3

315

0.5

2.3

22.0

9

1232

3207

3178

2.6

17

 

−5

273

1.0

25.4

26.5

1

2490

1066

1156

0.4

18

V7

−4

305

2.0

6.3

33.0

5

974

1331

807

1.4

Late-Stage Ore

No

Number of intersection with vein

Elevation (m a.s.l.)

Width of ore (m)

Au (ppb)

Ag (ppb)

Ag/Au ratio

Cu (ppm)

Pb (ppm)

Zn (ppm)

Pb/Cu ratio

1

V2

−5

307

0.9

1.3

43.0

33

5582

11,500

8460

2.1

2

V4

−1

286

1.5

1.8

59.5

34

5146

7785

9691

1.5

3

 

−2

293

0.5

1.8

44.2

24

5559

16,200

3098

2.9

4

 

−3

285

1.7

3.3

103.0

31

8397

4489

13,580

0.5

5

 

−4

327

0.5

3.5

85.3

24

1685

2633

1132

1.6

6

V5

−1

276

0.9

0.7

13.7

20

5483

1342

1880

0.2

7

 

−2

286

0.9

0.8

23.6

30

1095

1896

14,875

1.7

8

 

−6

292

0.9

6.4

180.0

28

15,420

20,650

22,655

1.3

9

 

−7

293

1.7

3.0

62.8

21

7698

2620

2111

0.3

10

 

−8

295

0.5

1.3

23.1

18

2322

2728

6040

1.2

11

V6

−2

323

1.5

0.9

20.3

23

3272

5759

2535

1.8

12

V7

−1

320

0.5

3.2

60.3

19

11,870

3403

3476

0.3

13

 

−2

320

2.0

1.8

58.6

32

1885

3494

12,679

1.9

14

 

−5

283

1.0

1.9

53.9

28

3218

1311

816

0.4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, H., Tomita, S.A., Koike, K. et al. Geological Modeling and Numerical Simulation of Cold-Water Trap in the Low-Sulfidation Epithermal Sirawai Au–Ag Deposit, Mindanao, Philippines. Nat Resour Res 31, 67–98 (2022). https://doi.org/10.1007/s11053-021-09978-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-021-09978-3

Keywords

Navigation