[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Groundwater Potential Mapping in a Rural River Basin by Union (OR) and Intersection (AND) of Four Multi-criteria Decision-Making Models

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Targeting groundwater in the river basin like Chandrabhaga with seasonal drought is a very urgent task especially for mitigating irrigation demand during the non-monsoon period. This paper delineated suitable groundwater potential zones based on the analytical hierarchy process (AHP), modified AHP, PCA-based weight and knowledge-based weight of multiple input parameters. For providing more certainty of the target zones in the derived models, union and intersection of all models were performed. A GIS-based multi-criteria approach using 13 relevant parameters has been adopted in this work. From the first four models, it is found that very suitable areas vary from 7.5 to 11% of the total basin area. The union and intersection models of the four individual models, respectively, delineated 13.91% and 3.69% suitable areas. Among the six models, the average yield of groundwater (5.96 L/s) is maximum in case of the intersection model, which is, therefore, more reliable than others. In case of the union model, the suitable area has 0.2 L/s less average yield than the intersection model. Therefore, for the harvesting more water, very good potential area delineated in the intersection model can be targeted. All these models will nevertheless help decision-makers to judge whether the existing groundwater harvesting structures are located properly or whether reorientation is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Al Saud, M. (2010). Mapping potential areas for groundwater storage in WadiAurnah Basin, western Arabian Peninsula, using remote sensing and geographic information system techniques. Hydrogeology Journal, 18, 1481–1495.

    Article  Google Scholar 

  • Al-Abadi, A. M., Pradhan, B., & Shahid, S. (2016). Prediction of groundwater flowing well zone at An-Najif Province, central Iraq using evidential belief functions model and GIS. Environmental Monitoring and Assessment, 188(10), 549.

    Article  Google Scholar 

  • Antonakos, A., Voudouris, K., & Lambrakis, N. (2014). Site selection for drinking-water pumping boreholes using a fuzzy spatial decision support system in the Korinthia prefecture, SE Greece. Hydrogeology Journal, 22, 1763–1776.

    Article  Google Scholar 

  • Bagchi, K., & Mukerjee, K. N. (1983). Diagnostic Survey of West Bengal(s). Pantg Delta and Rarh Bengal: Dept. of Geography, Calcutta University.

    Google Scholar 

  • Bandyopadhyay, S., Srivastava, S. K., Jha, M. K., Hegde, V. S., & Jayaraman, V. (2007). Harnessing earth observation (EO) capabilities in hydrogeology: An Indian perspective. Hydrogeology Journal, 15(1), 155–158.

    Article  Google Scholar 

  • Batabyal, A. K. (2017). Hydrogeochemical processes and contaminants enrichment with special emphasis on fluoride in groundwater of Birbhum district, West Bengal. India. Environmental Earth Sciences, 76(7), 285.

    Article  Google Scholar 

  • Bonissone, P. P., & Decker, K. S. (1986). Selecting uncertainty calculi and granularity: An experiment in trading-off precision and complexity. In Machine intelligence and pattern recognition (Vol. 4, pp. 217–247). North-Holland.

  • Central Ground Water Board (CGWB). (2008). Ground Water Information Booklet Hugli District, West Bengal. Ministry of Water Resources. Govt. of India. Retrieved from: http://cgwb.gov.in/District_Profile/WestBangal/Hughli.pdf, 7th April, 2017.

  • Central Ground Water Report. (2016). Ground Water Scenario in India. Central Ground Water Board, Ministry of Water Resources, Govt of India. http://cgwb.gov.in/Ground-Water/GW%20Monitoring%20Report_January%202016.pdf.

  • Central Water Commission. (2015). Annual Report 2015-16. Ministry of Water Resources, Govt of India. http://cwc.gov.in/main/downloads/Annual%20Report%20CWC_%202015-16.pdf.

  • Chen, W., Li, H., Hou, E., Wang, S., Wang, G., Panahi, M., et al. (2018). GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models. Science of the Total Environment, 634, 853–867.

    Article  Google Scholar 

  • Chenini, I., & Mammou, A. B. (2010). Groundwater recharge study in arid region: An approach using GIS techniques and numerical modelling. Computers & Geosciences, 36(6), 801–817.

    Article  Google Scholar 

  • Chowdhury, A., Jha, M. K., & Chowdary, V. M. (2010). Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques. Environmental Earth Sciences, 59(6), 1209.

    Article  Google Scholar 

  • Drobne, S., & Lisec, A. (2009). Multi-attribute decision analysis in GIS: weighted linear combination and ordered weighted averaging. Informatica, 33(4), 459–474.

    Google Scholar 

  • Elewa, H. H., & Qaddah, A. A. (2011). Groundwater potentiality mapping in the Sinai Peninsula, Egypt, using remote sensing and GIS-watershed-based modeling. Hydrogeology Journal, 19, 613–628.

    Article  Google Scholar 

  • Entekhabi, D., & Moghaddam, M. (2007). Mapping recharge from space: roadmap to meeting the grand challenge. Hydrogeology Journal, 15, 105–116.

    Article  Google Scholar 

  • Falah, F., GhorbaniNejad, S., Rahmati, O., Daneshfar, M., & Zeinivand, H. (2017). Applicability of generalized additive model in groundwater potential modelling and comparison its performance by bivariate statistical methods. Geocarto International, 32(10), 1069–1089.

    Article  Google Scholar 

  • Fashae, O. A., Tijani, M. N., Talabi, A. O., & Adedeji, O. I. (2014). Delineation of groundwater potential zones in the crystalline basement terrain of SW-Nigeria: an integrated GIS and remote sensing approach. Applied Water Science, 4(1), 19–38.

    Article  Google Scholar 

  • Foster, S. (1998). Groundwater: assessing vulnerability and promoting protection of a threatened resource. In Proceedings of the 8th Stockholm Water Symposium, 10–13 August, Sweden, pp. 79–90.

  • Ganapuram, S., Kumar, G. V., Krishna, I. M., Kahya, E., & Demirel, M. C. (2009). Mapping of groundwater potential zones in the Musi basin using remote sensing data and GIS. Advances in Engineering Software, 40(7), 506–518.

    Article  Google Scholar 

  • Ghayoumian, J., Ghermezcheshme, B., Feiznia, S., & Noroozi, A. A. (2005). Integrating GIS and DSS for identification of suitable areas for artificial recharge, case study Meimeh Basin, Isfahan, Iran. Environmental Geology, 47(4), 493–500.

    Article  Google Scholar 

  • GhorbaniNejad, S., Falah, F., Daneshfar, M., Haghizadeh, A., & Rahmati, O. (2017). Delineation of groundwater potential zones using remote sensing and GIS-based data-driven models. Geocarto International, 32(2), 167–187.

    Google Scholar 

  • Gupta, M., & Srivastava, P. K. (2010). Integrating GIS and remote sensing for identification of groundwater potential zones in the hilly terrain of Pavagarh, Gujarat, India. Water Int., 35, 233–245.

    Article  Google Scholar 

  • Guru, B., Seshan, K., & Bera, S. (2017). Frequency ratio model for groundwater potential mapping and its sustainable management in cold desert, India. Journal of King Saud University-Science, 29(3), 333–347.

    Article  Google Scholar 

  • Haridas, V. R., Aravindan, S., & Girish, G. (1998). Remote sensing and its applications for groundwater favourable area identification. Quarterly Journal of GARC, 6, 18–22.

    Google Scholar 

  • Ibrahim-Bathis, K., & Ahmed, S. A. (2016). Geospatial technology for delineating groundwater potential zones in Doddahalla watershed of Chitradurga district, India. The Egyptian Journal of Remote Sensing and Space Science, 19(2), 223–234.

    Article  Google Scholar 

  • Islam, M. M., & Sado, K. (2002). Development priority map for flood countermeasures by remote sensing data with geographic information system. Journal of Hydrologic Engineering, 7(5), 346–355.

    Article  Google Scholar 

  • Israil, M., Al-hadithi, M., & Singhal, D. C. (2006). Application of a resistivity survey and geographical information system (GIS) analysis for hydrogeological zoning of a piedmont area, Himalayan foothill region, India. Hydrogeology Journal, 14, 753–759.

    Article  Google Scholar 

  • Jasrotia, A. S., Kumar, A., & Singh, R. (2016). Integrated remote sensing and GIS approach for delineation of groundwater potential zones using aquifer parameters in Devak and Rui watershed of Jammu and Kashmir, India. Arabian Journal of Geosciences, 9(4), 304.

    Article  Google Scholar 

  • Jha, M. K., Chowdary, V. M., & Chowdhury, A. (2010). Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeology Journal, 18, 1713–1728.

    Article  Google Scholar 

  • Kaliraj, S., Chandrasekar, N., & Magesh, N. S. (2014). Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Arabian Journal of Geosciences, 7(4), 1385–1401.

    Article  Google Scholar 

  • Koch, M., & Mather, P. M. (1997). Lineament mapping for groundwater resource assessment: a comparison of digital Synthetic Aperture Radar (SAR) imagery and stereoscopic Large Format Camera (LFC) photographs in the Red Sea Hills, Sudan. International Journal of Remote Sensing, 18(7), 1465–1482.

    Article  Google Scholar 

  • Konkul, J., Rojborwornwittaya, W., & Chotpantarat, S. (2014). Hydrogeologic characteristics and groundwater potentiality mapping using potential surface analysis in the Huay Sai area, Phetchaburi Province, Thailand. Geoscience Journal, 18(1), 89–103.

    Article  Google Scholar 

  • Krishnamurthy, J. N., Venkatesa, K., Jayaraman, V., & Manivel, M. (1996). An approach to demarcate ground water potential zones through remote sensing and geographical information system. International Journal of Remote Sensing, 17, 1867–1884.

    Article  Google Scholar 

  • Kumar, D., & Dev, P. (2014). Groundwater potential zone identification of Karwi Area, Mandakini River Basin, Uttar Pradesh using remote sensing and GIS techniques. International Journal of Engineering Science Invention, 3(11), 10–19.

    Google Scholar 

  • Kumar, A., & Krishna, A. P. (2018). Assessment of groundwater potential zones in coal mining impacted hard-rock terrain of India by integrating geospatial and analytic hierarchy process (AHP) approach. Geocarto International, 33(2), 105–129.

    Article  Google Scholar 

  • Kundu, M. C., & Mandal, B. (2009). Assessment of potential hazards of fluoride contamination in drinking groundwater of an intensively cultivated district in West Bengal, India. Environmental Monitoring and Assessment, 152(1–4), 97.

    Article  Google Scholar 

  • Leblanc, M., Favreau, G., Tweed, S., Leduc, C., Razack, M., & Mofor, L. (2007). Remote sensing for groundwater modelling in large semiarid areas: Lake Cad Basin, Africa. Hydrogeology Journal, 15, 97–100.

    Article  Google Scholar 

  • Lee, S., Kim, Y. S., & Oh, H. J. (2012a). Application of a weights-of-evidence method and GIS to regional groundwater productivity potential mapping. The Journal of Environmental Management, 96(1), 91–105.

    Article  Google Scholar 

  • Lee, S., Song, K. Y., Kim, Y., & Park, I. (2012b). Regional groundwater productivity potential mapping using a geographic information system (GIS) based artificial neural network model. Hydrogeology Journal, 20, 1511–1527.

    Article  Google Scholar 

  • Magesh, N. S., Chandrasekar, N., & Soundranayagam, J. P. (2012). Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geoscience Frontiers, 3(2), 189–196.

    Article  Google Scholar 

  • Magesh, N. S., Chandrasekar, N., & Vetha Roy, D. (2011). Spatial analysis of trace element contamination in sediments of Tamiraparaniestuary, southeast coast of India. Estuarine, Coastal and Shelf Science, 92, 618–628.

    Article  Google Scholar 

  • Mahato, S., & Pal, S. (2018). Changing land surface temperature of a rural Rarh tract river basin of India. Remote Sensing Applications: Society and Environment, 10, 209–223.

    Article  Google Scholar 

  • Manap, M. A., Nampak, H., Pradhan, B., Lee, S., Sulaiman, W. N. A., & Ramli, M. F. (2014). Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arabian Journal of Geosciences, 7(2), 711–724.

    Article  Google Scholar 

  • McFeeters, S. K. (1996). The use of normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432.

    Article  Google Scholar 

  • Mehta, M. (2006). Status of groundwater and policy issues for its sustainable development in India. In Proceedings: Groundwater research and management: integrating science into management and decisions.

  • Ministry of Water Resources 2013–14. (2014). Ground Water Year Book, 2013–14. Central Ground Water Board, Govt of India. http://www.indiaenvironmentportal.org.in/files/file/Ground%20Water%20Year%20Book%202013-14.pdf.

  • Mogaji, K.A., Lim, H.S., & Abdullah, K. (2014). Regional prediction of groundwater potential mapping in a multifaceted geology terrain using GIS-based Dempster–Shafer model. The Arabian Journal of Geosciences. http://dx.doi.org/10.1007/s12517-014-1391-1.

  • Moghaddam, D. D., Rezaei, M., Pourghasemi, H. R., Pourtaghie, Z. S., & Pradhan, B. (2015). Groundwater spring potential mapping using bivariate statistical model and GIS in the Taleghan watershed, Iran. Arabian Journal of Geosciences, 8(2), 913–929.

    Article  Google Scholar 

  • Mondal, D., Gupta, S., Reddy, D. V., & Nagabhushanam, P. (2014). Geochemical controls on fluoride concentrations in groundwater from alluvial aquifers of the Birbhum district, West Bengal, India. Journal of Geochemical Exploration, 145, 190–206.

    Article  Google Scholar 

  • Mondal, D., & Pal, S. (2015). A multi-parametric spatial modeling of vulnerability due to arsenic pollution in Murshidabad district of West Bengal, India. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-015-1809-4.

  • Naghibi, S. A., & Dashtpagerdi, M. M. (2017). Evaluation of four supervised learning methods for groundwater spring potential mapping in Khalkhal region (Iran) using GIS-based features. Hydrogeology Journal, 25(1), 169–189.

    Article  Google Scholar 

  • Naghibi, S. A., & Pourghasemi, H. R. (2015). A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping. Water Resources Management, 29(14), 5217–5236.

    Article  Google Scholar 

  • Naghibi, S. A., Pourghasemi, H. R., & Abbaspour, K. (2018). A comparison between ten advanced and soft computing models for groundwater potential assessment in Iran using R and GIS. Theoretical and Applied Climatology, 131(3–4), 967–984.

    Article  Google Scholar 

  • Naghibi, S. A., Pourghasemi, H. R., & Dixon, B. (2016). GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environmental Monitoring and Assessment, 188(1), 44.

    Article  Google Scholar 

  • Naghibi, S.A., Pourghasemi, H.R., Pourtaghie, Z.S., & Rezaei, A. (2014). Groundwater potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iran. Earth Science Informatics. http://dx.doi.org/10.1007/s12145-014-0145-7.

  • Oikonomidis, D., Dimogianni, S., Kazakis, N., & Voudouris, K. (2015). A GIS/remote sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece. Journal of Hydrology, 525, 197–208.

    Article  Google Scholar 

  • Ozdemir, A. (2011a). GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. Journal of Hydrology, 411(3–4), 290–308.

    Article  Google Scholar 

  • Ozdemir, A. (2011b). Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the sultan mountains (Aksehir, Turkey). Journal of Hydrology, 405(1), 123–136.

    Article  Google Scholar 

  • Pal, S. (2016). Identification of soil erosion vulnerable areas in Chandrabhaga river basin: A multi-criteria decision approach. Modeling Earth Systems and Environment, 2(1), 1–11.

    Article  Google Scholar 

  • Pal, S., & Mahato, S. (2017). A GIS-based multi-criteria evaluation of a surface water irrigation potential zone in the Chandrabhaga River Basin, Eastern India. Advances in Environmental Research, 57, 161–193.

    Google Scholar 

  • Pal, S., Mahato, S., & Sarkar, S. (2016). Impact of fly ash on channel morphology and ambient water quality of Chandrabhaga River of Eastern India. Environmental Earth Sciences, 75(18), 1268.

    Article  Google Scholar 

  • Patra, S., Mishra, P., & Mahapatra, S. C. (2018). Delineation of groundwater potential zone for sustainable development: A case study from Ganga Alluvial Plain covering Hooghly district of India using remote sensing, geographic information system and analytic hierarchy process. Journal of Cleaner Production, 172, 2485–2502.

    Article  Google Scholar 

  • Pinto, D., Shrestha, S., Babel, M. S., & Ninsawat, S. (2017). Delineation of groundwater potential zones in the Comoro watershed, Timor Leste using GIS, remote sensing and analytic hierarchy process (AHP) technique. Applied Water Science, 7(1), 503–519.

    Article  Google Scholar 

  • Pourghasemi, H. R., & Beheshtirad, M. (2014). Assessment of a data-driven evidential belief function model and GIS for groundwater potential mapping in the Koohrang Watershed, Iran. Geocarto International. http://dx.doi.org/10.1080/10106049.2014.966161.

  • Pourghasemi, H. R., Moradi, H. R., & Aghda, S. F. (2013). Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Natural Hazards, 69(1), 749–779.

    Article  Google Scholar 

  • Pourtaghi, Z. S., & Pourghasemi, H. R. (2014). GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran. Hydrogeology Jouranl, 22, 643–662.

    Article  Google Scholar 

  • Prasad, R. K., Mondal, N. C., Banerjee, P., Nandakumar, M. V., & Singh, V. S. (2008). Deciphering potential groundwater zone in hard rock through the application of GIS. Environmental Geology, 55, 467–475.

    Article  Google Scholar 

  • Rahmati, O., & Melesse, A. M. (2016). Application of Dempster-Shafer theory, spatial analysis and remote sensing for groundwater potentiality and nitrate pollution analysis in the semi-arid region of Khuzestan. Iran. Science of the Total Environment, 568, 1110–1123.

    Article  Google Scholar 

  • Rahmati, O., Pourghasemi, H. R., & Melesse, A. M. (2016). Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region. Iran. Catena, 137, 360–372.

    Article  Google Scholar 

  • Rahmati, O., Samani, A. N., Mahdavi, M., Pourghasemi, H. R., & Zeinivand, H. (2015). Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arabian Journal of Geosciences, 8(9), 7059–7071.

    Article  Google Scholar 

  • Rasyid, A. R., Bhandary, N. P., & Yatabe, R. (2016). Performance of frequency ratio and logistic regression model in creating GIS based landslides susceptibility map at Lompobattang Mountain, Indonesia. Geoenvironmental Disasters, 3(1), 19.

    Article  Google Scholar 

  • Razandi, Y., Pourghasemi, H. R., Neisani, N. S., & Rahmati, O. (2015). Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Science Informatics, 8(4), 867–883.

    Article  Google Scholar 

  • Rhoad, R., Milauskas, G., & Whipple, R. (1991). Geometry for enjoyment and challenge. Evanston, IL: McDougal Littell.

    Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process. New York, NY: McGraw-Hill.

    Google Scholar 

  • Saaty, T. L. (1990). Remarks on the analytic hierarchy process. Management Science, 36, 259–268.

    Article  Google Scholar 

  • Sahoo, S., Dhar, A., Kar, A., & Ram, P. (2017). Grey analytic hierarchy process applied to effectiveness evaluation for groundwater potential zone delineation. Geocarto International, 32(11), 1188–1205.

    Article  Google Scholar 

  • Sanyal, J., & Lu, X. X. (2006). GIS-base flood hazard mapping at different administrative scales: A case study in Gangetic West Bengal, India. Singapore Journal of Tropical Geography, 27, 207–220.

    Article  Google Scholar 

  • Saraf, A., & Choudhary, P. R. (1998). Integrated remote sensing and GIS for ground water exploration and identification of artificial recharge site. International Journal of Remote Sensing, 19, 1825–1841.

    Article  Google Scholar 

  • Senanayake, I. P., Dissanayake, D. M. D. O. K., Mayadunna, B. B., & Weerasekera, W. L. (2016). An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geoscience Frontiers, 7(1), 115–124.

    Article  Google Scholar 

  • Singh, L. K., Jha, M. K., & Chowdary, V. M. (2018a). Assessing the accuracy of GIS-based multi-criteria decision analysis approaches for mapping groundwater potential. Ecological Indicators, 91, 24–37.

    Article  Google Scholar 

  • Singh, L., Khare, D., & Mishra, N. (2018b). Remote sensing and GIS for groundwater potential zones Ghagger Watershed, Himachal Pradesh. Journal of Graphic Era University, 6(1), 80–93.

    Google Scholar 

  • Souissi, D., Msaddek, M. H., Zouhri, L., Chenini, I., El May, M., & Dlala, M. (2018). Mapping groundwater recharge potential zones in arid region using GIS and Landsat approaches, southeast Tunisia. Hydrological Sciences Journal, 63, 1–18.

    Article  Google Scholar 

  • Srinivasa Rao, Y., & Jugran, D. K. (2003). Delineation of groundwater potential zones and zones of groundwater quality suitable for domestic purposes using remote sensing and GIS. Hydrological Sciences Journal, 48(5), 821–833.

    Article  Google Scholar 

  • Tahmassebipoor, N., Rahmati, O., Noormohamadi, F., & Lee, S. (2016). Spatial analysis of groundwater potential using weights-of-evidence and evidential belief function models and remote sensing. Arabian Journal of Geosciences, 9(1), 79.

    Article  Google Scholar 

  • Teeuw, R. M. (1995). Groundwater exploration using remote sensing and a low-cost geographical information system. Hydrogeology Journal, 3(3), 21–30.

    Article  Google Scholar 

  • Thakur, D., Bartarya, S. K., & Nainwal, H. C. (2018). Mapping groundwater prospect zones in an intermontane basin of the Outer Himalaya in India using GIS and remote sensing techniques. Environmental Earth Sciences, 77(10), 368.

    Article  Google Scholar 

  • Thapa, R., Gupta, S., Gupta, A., Reddy, D. V., & Kaur, H. (2018). Use of geospatial technology for delineating groundwater potential zones with an emphasis on water-table analysis in Dwarka River basin, Birbhum, India. Hydrogeology Journal, 26(3), 899–922.

    Article  Google Scholar 

  • Townshend, J. R., & Justice, C. O. (1986). Analysis of the dynamics of African vegetation using the normalized difference vegetation index. International Journal of Remote Sensing, 7(11), 1435–1445.

    Article  Google Scholar 

  • Tweed, S. O., Leblanc, M., Webb, J. A., & Lubczynski, M. W. (2007). Remote sensing and GIS for mapping groundwater recharge and discharge areas in salinity prone catchments, SE Australia. Hydrogeology Journal, 15, 75–96.

    Article  Google Scholar 

  • Vishwajith, K. P., Sahu, P. K., Noman, M., Dhekale, B. S., & Narasimhaiah, L. (2015). Clustering of the districts of West Bengal based on spatial and temporal distribution of groundwater table depth towards effective monitoring and management of the valuable water resources. Nature, Environment and Pollution Technology, 14(3), 501.

    Google Scholar 

  • Yeh, H. F., Cheng, Y. S., Lin, H. I., & Lee, C. H. (2017). Mapping groundwater recharge potential zone using a GIS approach in Hualian River, Taiwan. Sustainable Environment Research, 26(1), 33–43.

    Article  Google Scholar 

  • Yu, C., Liu, K., Meng, W., Wu, Z., & Rishe, N. (2002). A methodology for retrieving text documents from multiple databases. IEEE TKDE, 14(6), 1347–1361.

    Google Scholar 

  • Zabihi, M., Pourghasemi, H. R., Pourtaghi, Z. S., & Behzadfar, M. (2016). GIS-based multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran. Environmental Earth Sciences, 75(8), 665.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Editor-in-Chief John Carranza and two anonymous reviewers for their very useful comments to improve the quality of the manuscript, and also thankful to Swapan Talukdar for his assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanta Mahato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahato, S., Pal, S. Groundwater Potential Mapping in a Rural River Basin by Union (OR) and Intersection (AND) of Four Multi-criteria Decision-Making Models. Nat Resour Res 28, 523–545 (2019). https://doi.org/10.1007/s11053-018-9404-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-018-9404-5

Keywords

Navigation