[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Multi-view spectral clustering based on adaptive neighbor learning and low-rank tensor decomposition

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Aiming at the problem that traditional multi-view clustering algorithms only focus on shared information in multi-views and ignore the unique information and high-order correlations of each view, in this paper, a multi-view spectral clustering algorithm based on adaptive neighbor learning and low-rank tensor decomposition (ANLTSC) is proposed. Specifically, in the ANLTSC model, we adopt the adaptive neighbor graph construction method to learn the similarity graph of each view and calculate the transition probability matrix corresponding to each view, so as to reveal the class properties between samples more accurately. Then, transition probability matrices are stacked into a tensor for mining high-order correlations between multi-view data. The noise between different views is effectively filtered through tensor decomposition, and an intrinsically low-rank tensor is obtained for final clustering. Finally, experiments are carried out on seven benchmark datasets, the results show that the proposed ANLTSC algorithm achieves the best clustering results on most multi-view datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Algorithm 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data openly available in a public repository.

Notes

  1. http://mlg.ucd.ie/datasets/bbc.html.

  2. https://cs.nyu.edu/roweis/data.html.

  3. http://archive.ics.uci.edu/ml/datasets/Multiple+Features.

  4. https://archive.ics.uci.edu/ml/datasets/One-hundred+plant+species+leaves+data+set.

References

  1. Ali A, Zhu Y, Zakarya M (2021) Exploiting dynamic spatio-temporal correlations for citywide traffic flow prediction using attention based neural networks. Inf Sci 577:852–870

    Article  MathSciNet  Google Scholar 

  2. Ali A, Zhu Y, Zakarya M (2021) A data aggregation based approach to exploit dynamic spatio-temporal correlations for citywide crowd flows prediction in fog computing. Multimed Tools Appl 80(20):31401–31433

    Article  Google Scholar 

  3. Ali A, Zhu Y, Zakarya M (2022) Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction. Neural Netw 145:233–247

    Article  Google Scholar 

  4. Cai D, He X, Han J, Huang TS (2010) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Intell 33(8):1548–1560

    Google Scholar 

  5. Chen Y, Xiao X, Hua Z, Zhou Y (2021) Adaptive transition probability matrix learning for multiview spectral clustering. IEEE Trans Neural Netw Learn Syst:1–15

  6. Du S, Ma Y, Li S, Ma Y (2017) Robust unsupervised feature selection via matrix factorization. Neurocomputing 241:115–127

    Article  Google Scholar 

  7. Gao Q, Xia W, Gao X, Tao D (2021) Effective and efficient graph learning for multi-view clustering. arXiv:210806734

  8. Gao Q, Zhang P, Xia W, Xie D, Gao X, Tao D (2020) Enhanced tensor rpca and its application. IEEE Trans Pattern Anal Mach Intell 43 (6):2133–2140

    Article  Google Scholar 

  9. Hao W, Pang S, Yang B, Xue J (2022) Tensor-based multi-view clustering with consistency exploration and diversity regularization. Knowl-Based Syst 252:109342

    Article  Google Scholar 

  10. Hu Z, Nie F, Chang W, Hao S, Wang R, Li X (2020) Multi-view spectral clustering via sparse graph learning. Neurocomputing 384:1–10

    Article  Google Scholar 

  11. Hu Z, Nie F, Wang R, Li X (2020) Multi-view spectral clustering via integrating nonnegative embedding and spectral embedding. Inf Fusion 55:251–259

    Article  Google Scholar 

  12. Hu W, Tao D, Zhang W, Xie Y, Yang Y (2016) The twist tensor nuclear norm for video completion. IEEE Trans Neural Netw Learn Syst 28(12):2961–2973

    Article  MathSciNet  Google Scholar 

  13. Huang Y, Xiao Q, Du S, Yu Y (2022) Multi-view clustering based on low-rank representation and adaptive graph learning. Neural Process Lett 54(1):265–283

    Article  Google Scholar 

  14. Huang S, Xu Z, Kang Z, Ren Y (2020) Regularized nonnegative matrix factorization with adaptive local structure learning. Neurocomputing 382:196–209

    Article  Google Scholar 

  15. Kang Z, Pan H, Hoi SC, Xu Z (2019) Robust graph learning from noisy data. IEEE Trans Cybern 50(5):1833–1843

    Article  Google Scholar 

  16. Ke G, Hong Z, Yu W, Zhang X, Liu Z (2022) Efficient multi-view clustering networks. Appl Intell:1–17

  17. Kilmer ME, Martin CD (2011) Factorization strategies for third-order tensors. Linear Algebra Appl 435(3):641–658

    Article  MathSciNet  MATH  Google Scholar 

  18. Li Z, Tang C, Liu X, Zheng X, Zhang W, Zhu E (2021) Consensus graph learning for multi-view clustering. IEEE Trans Multimed 24:2461–2472

    Article  Google Scholar 

  19. Li X, Zhang H, Wang R, Nie F (2020) Multiview clustering: a scalable and parameter-free bipartite graph fusion method. IEEE Trans Pattern Anal Mach Intell 44(1):330–344

    Article  Google Scholar 

  20. Lin Z, Liu R, Su Z (2011) Linearized alternating direction method with adaptive penalty for low-rank representation. arXiv:11090367, pp 612–620

  21. Liu H, Fu Y (2018) Consensus guided multi-view clustering. ACM Trans Knowl Discovery from Data (TKDD) 12(4):1–21

    Article  Google Scholar 

  22. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2012) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Article  Google Scholar 

  23. Liu J, Liu X, Yang Y, Guo X, Kloft M, He L (2021) Multiview subspace clustering via co-training robust data representation. IEEE Trans Neural Netw Learn Syst:1–13

  24. Liu J, Musialski P, Wonka P, Ye J (2012) Tensor completion for estimating missing values in visual data. IEEE Trans Pattern Anal Mach Intell 35 (1):208–220

    Article  Google Scholar 

  25. Lu C, Feng J, Chen Y, Liu W, Lin Z, Yan S (2016) Tensor robust principal component analysis: exact recovery of corrupted low-rank tensors via convex optimization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5249–5257

  26. Lu GF, Yu QR, Wang Y, Tang G (2020) Hyper-laplacian regularized multi-view subspace clustering with low-rank tensor constraint. Neural Netw 125:214–223

    Article  MATH  Google Scholar 

  27. Najafi M, He L, Philip SY (2019) Outlier-robust multi-aspect streaming tensor completion and factorization. In: IJCAI, pp 3187–3194

  28. Narayana GS, Kolli K (2021) Fuzzy k-means clustering with fast density peak clustering on multivariate kernel estimator with evolutionary multimodal optimization clusters on a large dataset. Multimed Tools Appl 80(3):4769–4787

    Article  Google Scholar 

  29. Ng AY, Jordan MI, Weiss Y et al (2002) On spectral clustering: analysis and an algorithm. Adv Neural Inf Process Syst 2:849–856

    Google Scholar 

  30. Nie F, Cai G, Li X (2017) Multi-view clustering and semi-supervised classification with adaptive neighbours. In: Thirty-first AAAI conference on artificial intelligence, pp 2408–2414

  31. Nie F, Li J, Li X et al (2016) Parameter-free auto-weighted multiple graph learning: a framework for multiview clustering and semi-supervised classification. In: IJCAI, pp 1881–1887

  32. Nie F, Li J, Li X et al (2017) Self-weighted multiview clustering with multiple graphs. In: IJCAI, pp 2564–2570

  33. Nie F, Tian L, Li X (2018) Multiview clustering via adaptively weighted procrustes. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pp 2022–2030

  34. Nie F, Wang X, Huang H (2014) Clustering and projected clustering with adaptive neighbors. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 977–986

  35. Nie F, Wang X, Jordan M, Huang H (2016) The constrained laplacian rank algorithm for graph-based clustering. In: Proceedings of the AAAI conference on artificial intelligence, vol 30, pp 1969–1976

  36. Ren P, Xiao Y, Xu P, Guo J, Chen X, Wang X, Fang D (2018) Robust auto-weighted multi-view clustering. In: IJCAI, pp 2644–2650

  37. Shu Z, Wu X, Hu C, You C, Fan H (2021) Deep semi-nonnegative matrix factorization with elastic preserving for data representation. Multimed Tools Appl 80(2):1707–1724

    Article  Google Scholar 

  38. Sun M, Wang S, Zhang P, Liu X, Guo X, Zhou S, Zhu E (2021) Projective multiple kernel subspace clustering. IEEE Trans Multimed 24:2567–2579

    Article  Google Scholar 

  39. Tong T, Zhu X, Du T (2019) Connected graph decomposition for spectral clustering. Multimed Tools Appl 78(23):33247–33259

    Article  Google Scholar 

  40. Wang S, Chen Y, Jin Y, Cen Y, Li Y, Zhang L (2021) Error-robust low-rank tensor approximation for multi-view clustering. Knowl-Based Syst 215:106745

    Article  Google Scholar 

  41. Wang S, Liu X, Zhu X, Zhang P, Zhang Y, Gao F, Zhu E (2021) Fast parameter-free multi-view subspace clustering with consensus anchor guidance. IEEE Trans Image Process 31:556–568

    Article  Google Scholar 

  42. Wang H, Yang Y, Liu B (2019b) Gmc: graph-based multi-view clustering. IEEE Trans Knowl Data Eng 32(6):1116–1129

  43. Wang H, Yang Y, Liu B, Fujita H (2019a) A study of graph-based system for multi-view clustering. Knowl-Based Syst 163:1009–1019

  44. Weng W, Zhou W, Chen J, Peng H, Cai H (2020) Enhancing multi-view clustering through common subspace integration by considering both global similarities and local structures. Neurocomputing 378:375–386

    Article  Google Scholar 

  45. Winn J, Jojic N (2005) Locus: learning object classes with unsupervised segmentation. In: Tenth IEEE international conference on computer vision (ICCV’05) volume 1. IEEE, vol 1, pp 756–763

  46. Wu J, Lin Z, Zha H (2019) Essential tensor learning for multi-view spectral clustering. IEEE Trans Image Process 28(12):5910–5922

    Article  MathSciNet  MATH  Google Scholar 

  47. Wu J, Xie X, Nie L, Lin Z, Zha H (2020) Unified graph and low-rank tensor learning for multi-view clustering. In: Proceedings of the AAAI conference on artificial intelligence, vol 34, pp 6388–6395

  48. Xia R, Pan Y, Du L, Yin J (2014) Robust multi-view spectral clustering via low-rank and sparse decomposition. In: Proceedings of the AAAI conference on artificial intelligence, vol 28, pp 2149–2155

  49. Xia W, Wang S, Yang M, Gao Q, Han J, Gao X (2022) Multi-view graph embedding clustering network: Joint self-supervision and block diagonal representation. Neural Netw 145:1–9

    Article  MATH  Google Scholar 

  50. Xia W, Zhang X, Gao Q, Shu X, Han J, Gao X (2021) Multiview subspace clustering by an enhanced tensor nuclear norm. IEEE Trans Cybern:1–14

  51. Xiao Q, Du S, Huang Y (2021) Multi-view spectral clustering based on low-rank tensor decomposition. In: 2021 33rd Chinese control and decision conference (CCDC), IEEE, pp 2258-2263

  52. Xiao Q, Du S, Song J, Yu Y, Huang Y (2021) Hyper-laplacian regularized multi-view subspace clustering with a new weighted tensor nuclear norm. IEEE Access 9:118851–118860

    Article  Google Scholar 

  53. Xiao Q, Du S, Yu Y, Huang Y, Song J (2022) Hyper-laplacian regularized multi-view subspace clustering with jointing representation learning and weighted tensor nuclear norm constraint. J Intell Fuzzy Syst (Preprint):1–14

  54. Xiao X, Wei L (2020) Robust subspace clustering via latent smooth representation clustering. Neural Process Lett 52(2):1317–1337

    Article  Google Scholar 

  55. Xie Y, Tao D, Zhang W, Liu Y, Zhang L, Qu Y (2018) On unifying multi-view self-representations for clustering by tensor multi-rank minimization. Int J Comput Vis 126(11):1157–1179

    Article  MathSciNet  MATH  Google Scholar 

  56. Xie Y, Zhang W, Qu Y, Dai L, Tao D (2018) Hyper-laplacian regularized multilinear multiview self-representations for clustering and semisupervised learning. IEEE Trans Cybern 50(2):572–586

    Article  Google Scholar 

  57. Xu H, Zhang X, Xia W, Gao Q, Gao X (2020) Low-rank tensor constrained co-regularized multi-view spectral clustering. Neural Netw 132:245–252

    Article  MATH  Google Scholar 

  58. Zhan K, Nie F, Wang J, Yang Y (2018) Multiview consensus graph clustering. IEEE Trans Image Process 28(3):1261–1270

    Article  MathSciNet  Google Scholar 

  59. Zhan K, Zhang C, Guan J, Wang J (2017) Graph learning for multiview clustering. IEEE Trans Cybern 48(10):2887–2895

    Article  Google Scholar 

  60. Zhang Z, Ely G, Aeron S, Hao N, Kilmer M (2014) Novel methods for multilinear data completion and de-noising based on tensor-svd. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3842–3849

  61. Zhang C, Fu H, Liu S, Liu G, Cao X (2015) Low-rank tensor constrained multiview subspace clustering. In: Proceedings of the IEEE international conference on computer vision, pp 1582–1590

  62. Zhao Y, Yun Y, Zhang X, Li Q, Gao Q (2022) Multi-view spectral clustering with adaptive graph learning and tensor schatten p-norm. Neurocomputing 468:257–264

    Article  Google Scholar 

  63. Zheng Q, Zhu J, Li Z, Pang S, Wang J, Li Y (2020) Feature concatenation multi-view subspace clustering. Neurocomputing 379:89–102

    Article  Google Scholar 

  64. Zhou J, Liu T, Zhu J (2019) Weighted adjacent matrix for k-means clustering. Multimed Tools Appl 78(23):33415–33434

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (No.61866033), the Gansu Provincial Department of Education University Teachers Innovation Fund Project (No.2023B-056), the Introduction of Talent Research Project of Northwest Minzu University (No. xbmuyjrc201904), and the Fundamental Research Funds for the Central Universities of Northwest Minzu University (No.31920220019, 31920220130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiqiang Du.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Q., Du, S., Liu, B. et al. Multi-view spectral clustering based on adaptive neighbor learning and low-rank tensor decomposition. Multimed Tools Appl 82, 41159–41186 (2023). https://doi.org/10.1007/s11042-023-15018-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-15018-4

Keywords

Navigation