[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An efficient deep neural network with color-weighted loss for fire detection

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Fire is one of the most harmful hazards that affect daily life. Compared with sensor-based methods, vision-based methods have more advantages in fire detection. Existing approaches fail to achieve a good trade-off among fire locations, false alarms and model size. In this paper, we propose a fire detection method based on deep learning with anchor-free architecture. We apply a conditional convolution to boost the visual representation of fire and construct a lightweight backbone by using the proposed conditional ghost module. A color-weighted loss function is presented to obtain more valuable information by using the unique color of fire. Besides, we create an annotated dataset for fire detection. A series of experiments demonstrate that the proposed method outperforms other popular methods based on handcraft features and deep learning object detection. Furthermore, the model size of the proposed method is only 34.92 MB, 80.73% smaller than that of the suboptimal method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barmpoutis P, Dimitropoulos K, Kaza K (2019) Fire detection from images using faster r-cnn and multidimensional texture analysis. In: ICASSP 2019-2019 IEEE International conference on acoustics, speech and signal processing (ICASSP), IEEE, pp 8301–8305

  2. Borges PVK, Izquierdo E (2010) A probabilistic approach for vision-based fire detection in videos. IEEE transactions on circuits and systems for video technology 20(5):721–731

    Article  Google Scholar 

  3. Celik T, Demirel H (2009) Fire detection in video sequences using a generic color model. Fire safety journal 44(2):147–158

    Article  Google Scholar 

  4. Celik T, Demirel H, Ozkaramanli H, Uyguroglu M (2007) Fire detection using statistical color model in video sequences. J Vis Commun Image Represent 18(2):176–185

    Article  Google Scholar 

  5. Chaoxia C, Shang W, Zhang F (2020) Information-guided flame detection based on faster r-cnn. IEEE Access 8:58923–58932

    Article  Google Scholar 

  6. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017) Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence 40(4):834–848

    Article  Google Scholar 

  7. Chen TH, Wu PH, Chiou YC (2004) An early fire-detection method based on image processing. In: 2004 International conference on image processing, 2004. ICIP’04., IEEE, vol 3, pp 1707–1710

  8. Dunnings AJ, Breckon TP (2018) Experimentally defined convolutional neural network architecture variants for non-temporal real-time fire detection. In: 2018 25th IEEE International Conference on Image Processing (ICIP), IEEE, pp 1558–1562

  9. Foggia P, Saggese A, Vento M (2015) Real-time fire detection for video-surveillance applications using a combination of experts based on color, shape, and motion. IEEE TRANSACTIONS on circuits and systems for video technology 25(9):1545–1556

    Article  Google Scholar 

  10. Goyal P, Kaiming H (2018) Focal loss for dense object detection. IEEE transactions on pattern analysis and machine intelligence 39:2999–3007

    Google Scholar 

  11. Gunay O, Toreyin BU, Kose K, Cetin AE (2012) Entropy-functional-based online adaptive decision fusion framework with application to wildfire detection in video. IEEE Trans Image Process 21(5):2853–2865

    Article  MathSciNet  Google Scholar 

  12. Ha C, Hwang U, Jeon G, Cho J, Jeong J (2012) Vision-based fire detection algorithm using optical flow. In: 2012 Sixth international conference on complex, Intelligent, and Software Intensive Systems, IEEE, pp 526–530

  13. Han K, Wang Y, Tian Q, Guo J, Xu C, Xu C (2020) Ghostnet: More features from cheap operations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1580–1589

  14. Hashemzadeh M, Zademehdi A (2019) Fire detection for video surveillance applications using ica k-medoids-based color model and efficient spatio-temporal visual features. Expert Syst Appl 130:60–78

    Article  Google Scholar 

  15. Hosang J, Benenson R, Dollár P, Schiele B (2015) What makes for effective detection proposals? IEEE transactions on pattern analysis and machine intelligence 38(4):814–830

    Article  Google Scholar 

  16. Howard A, Sandler M, Chu G, Chen LC, Chen B, Tan M, Wang W, Zhu Y, Pang R, Vasudevan V et al (2019) Searching for mobilenetv3. In: Proceedings of the IEEE International Conference on Computer Vision, pp 1314–1324

  17. Kim B, Lee J (2019) A video-based fire detection using deep learning models. Appl Sci 9(14):2862

    Article  Google Scholar 

  18. Ko BC, Cheong KH, Nam JY (2009) Fire detection based on vision sensor and support vector machines. Fire Safety Journal 44(3):322–329

    Article  Google Scholar 

  19. Ko B, Cheong KH, Nam JY (2010) Early fire detection algorithm based on irregular patterns of flames and hierarchical bayesian networks. Fire safety journal 45(4):262–270

    Article  Google Scholar 

  20. Kong SG, Jin D, Li S, Kim H (2016) Fast fire flame detection in surveillance video using logistic regression and temporal smoothing. Fire Safety Journal 79:37–43

    Article  Google Scholar 

  21. Li S, Yan Q, Liu P (2020) An efficient fire detection method based on multiscale feature extraction, implicit deep supervision and channel attention mechanism. IEEE Trans Image Process 29:8467–8475

    Article  Google Scholar 

  22. Li P, Zhao W (2020) Image fire detection algorithms based on convolutional neural networks. Case Studies in Thermal Engineering pp 100625

  23. Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2117–2125

  24. Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: Common objects in context. In: European conference on computer vision, Springer, pp 740–755

  25. Liu L, Ouyang W, Wang X, Fieguth P, Chen J, Liu X, Pietikäinen M (2020) Deep learning for generic object detection: a survey. International journal of computer vision 128(2):261–318

    Article  Google Scholar 

  26. Liu P, Yu H, Cang S, Vladareanu L (2016) Robot-assisted smart firefighting and interdisciplinary perspectives. In: 2016 22Nd international conference on automation and computing (ICAC), IEEE, pp 395–401

  27. Lu X, Ma C, Ni B, Yang X, Reid I, Yang MH (2018) Deep regression tracking with shrinkage loss. In: Proceedings of the European conference on computer vision (ECCV), pp 353–369

  28. Lu X, Ma C, Shen J, Yang X, Reid I, Yang MH (2020) Deep object tracking with shrinkage loss. IEEE transactions on pattern analysis and machine intelligence

  29. Mao W, Wang W, Dou Z, Li Y (2018) Fire recognition based on multi-channel convolutional neural network. Fire technology 54(2):531–554

    Article  Google Scholar 

  30. Mueller M, Karasev P, Kolesov I, Tannenbaum A (2013) Optical flow estimation for flame detection in videos. IEEE Transactions on image processing 22(7):2786–2797

    Article  Google Scholar 

  31. Muhammad K, Ahmad J, Baik SW (2018) Early fire detection using convolutional neural networks during surveillance for effective disaster management. Neurocomputing 288:30–42

    Article  Google Scholar 

  32. Muhammad K, Ahmad J, Mehmood I, Rho S, Baik SW (2018) Convolutional neural networks based fire detection in surveillance videos. IEEE Access 6:18174–18183

    Article  Google Scholar 

  33. Muhammad K, Ahmad J, Lv Z, Bellavista P, Yang P, Baik SW (2018) Efficient deep cnn-based fire detection and localization in video surveillance applications. IEEE Transactions on Systems, Man, and Cybernetics: Systems 49(7):1419–1434

    Article  Google Scholar 

  34. Muhammad K, Khan S, Elhoseny M, Ahmed SH, Baik SW (2019) Efficient fire detection for uncertain surveillance environment. IEEE Transactions on Industrial Informatics 15(5):3113–3122

    Article  Google Scholar 

  35. Ren S, He K, Girshick R, Sun J (2016) Faster r-cnn: towards real-time object detection with region proposal networks. IEEE transactions on pattern analysis and machine intelligence 39(6):1137–1149

    Article  Google Scholar 

  36. Rezatofighi H, Tsoi N, Gwak J, Sadeghian A, Reid I, Savarese S (2019) Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 658–666

  37. Saeed F, Paul A, Karthigaikumar P, Nayyar A (2019) Convolutional neural network based early fire detection. Multimedia Tools and Applications, pp 1–17

  38. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2018) Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4510–4520

  39. Shahid M, Chien IF, Sarapugdi W, Miao L, Hua KL (2020) Deep spatial-temporal networks for flame detection. Multimedia Tools and Applications pp 1–22

  40. Sun L, Zhao C, Yan Z, Liu P, Duckett T, Stolkin R (2018) A novel weakly-supervised approach for rgb-d-based nuclear waste object detection. IEEE Sensors J 19(9):3487–3500

    Article  Google Scholar 

  41. Tang Z, Yu H, Lu C, Liu P, Jin X (2019) Single-trial classification of different movements on one arm based on erd/ers and corticomuscular coherence. IEEE Access 7:128185–128197

    Article  Google Scholar 

  42. Tian Z, Shen C, Chen H, He T (2019) Fcos: Fully convolutional one-stage object detection. In: Proceedings of the IEEE international conference on computer vision, pp 9627–9636

  43. Truong TX, Kim JM (2012) Fire flame detection in video sequences using multi-stage pattern recognition techniques. Eng Appl Artif Intell 25 (7):1365–1372

    Article  Google Scholar 

  44. Woo S, Park J, Lee JY, Kweon IS (2018) Cbam: Convolutional block attention module. In: European Conference on Computer Vision, Springer, pp 3–19

  45. Wu H, Wu D, Zhao J (2019) An intelligent fire detection approach through cameras based on computer vision methods. Process Saf Environ Protect 127:245–256

    Article  Google Scholar 

  46. Yang B, Bender G, Le QV, Ngiam J (2019) Condconv: Conditionally parameterized convolutions for efficient inference. In: Advances in Neural Information Processing Systems, pp 1307–1318

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Zhang, W., Liu, Y. et al. An efficient deep neural network with color-weighted loss for fire detection. Multimed Tools Appl 81, 39695–39713 (2022). https://doi.org/10.1007/s11042-022-12861-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12861-9

Keywords

Navigation