[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A new intelligent system for diagnosing tumors with MR images using type-2 fuzzy neural network (T2FNN)

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Early diagnosis of tumors can reduce mortality rates. Hence, tumor position, tumor area, and tumor categories evaluation are also mandatory concerns for the proper medication. This paper presents a new intelligent system for diagnosing the human brain tumors using 60 magnetic resonance images (MRI) with contrast. The proposed methods have five distinct modules including pre-processing, performance elements, critic, learning element, and classification. In the pre-processing, the quality of MR images are enhanced and the noises are removed from it. In the performance elements, the images are segmented with K-mean algorithm and the feathers are extracted from the images with the help of gray level co-occurrence matrix. Next, the data is manipulated in critical part with roles and it is transfered to the learning element part. Then, the Self Organizing Map (SOM) is used to identify the exact location of tumors. Finally, the four types of tumors, astrocytoma, meningiomas, metastatic and glioblastoma will be classified by the K-mean type-2 fuzzy neural. The obtained results indidate that the proposed method has greater values of Sensitivity, Precision, F-measure, Accuracy, and Receiver Operating Characteristic (ROC) compare to other relevant methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Adhikari SK, Sing JK, Basu DK, Nasipuri M (2015) Conditional spatial fuzzy C-means clustering algorithm for segmentation of MRI images. Appl Soft Comput J 34:758–769. https://doi.org/10.1016/j.asoc.2015.05.038

    Article  Google Scholar 

  2. Ahmmed R, Rahman MA, Hossain MF (2018) Fuzzy logic based algorithm to classify tumor categories with position from brain MRI images. In: 3rd Int. Conf. Electr. Inf. Commun. Technol. EICT 2017, vol. 2018-Janua, no. December, pp 1–6. https://doi.org/10.1109/EICT.2017.8275232.

  3. Al-Badarneh A, Alrazqi A, Najadat H (2015) Performance impact of texture features on MRI image classification. In: ACM Int. Conf. Proceeding Ser., vol. 24–26-Sept. https://doi.org/10.1145/2832987.2833063

  4. Behzadfar N, Soltanian-Zadeh H (2012) Automatic segmentation of brain tumors in magnetic resonance images. In: Proc. - IEEE-EMBS Int. Conf. Biomed. Heal. Informatics Glob. Gd. Chall. Heal. Informatics, BHI 2012, vol 21, pp. 329–332. https://doi.org/10.1109/BHI.2012.6211580.

  5. Benson CC, Lajish VL, Rajamani K (2017) Robust classification of MR brain images based on fractal dimension analysis. In: 2017 Int. Conf. Adv. Comput. Commun. Informatics, ICACCI 2017, pp 1135–1140 https://doi.org/10.1109/ICACCI.2017.8125994.

  6. Blessy SAPS, Sulochana CH (2014) Review on MRI brain tumor segmentation. Proc Comput Sci 626:38–43

    Google Scholar 

  7. Chatterjee S, Das A (2019) A novel systematic approach to diagnose brain tumor using integrated type-II fuzzy logic and ANFIS (adaptive neuro-fuzzy inference system ) model. Soft Comput. https://doi.org/10.1007/s00500-019-04635-7

    Article  Google Scholar 

  8. Chauhan S, More A, Uikey R, Malviya P, Moghe A (2018) Brain tumor detection and classification in MRI images using image and data mining. In: Int. Conf. Recent Innov. Signal Process. Embed. Syst. RISE, pp. 223–231. https://doi.org/10.1109/RISE.2017.8378158.

  9. de Oliveira JMP (2011) Diagnostic techniques and surgical management of brain tumors. InTech

  10. Dean BL et al (1990) Gliomas: classification with MR imaging. Radiology 174(2):411–415. https://doi.org/10.1148/radiology.174.2.2153310

    Article  Google Scholar 

  11. Demirkaya O, Asyali MH, Sahoo PK (2008) Image processing with {MATLAB}: applications in medicine and biology

  12. Dogan B, KazdalÇalik S, Demir Ö (2016) Computer-aided detection of brain tumors using morphological reconstruction. Uludağ Univ J Fac Eng 21:257–257. https://doi.org/10.17482/uumfd.270102

    Article  Google Scholar 

  13. Drevelegas A (2011) Imaging of brain tumors with histological correlations

  14. FazelZarandi MH, Zarinbal M, Izadi M (2011) Systematic image processing for diagnosing brain tumors: a Type-II fuzzy expert system approach. Appl Soft Comput J 11:285–294. https://doi.org/10.1016/j.asoc.2009.11.019

    Article  Google Scholar 

  15. Fridrich J (2014) Digital image acquisition. Steganography in digital media. Cambridge University Press, Cambridge, pp 33–46

    Google Scholar 

  16. Ghaemi S, Sabahi K, Badamchizadeh MA (2019) Lyapunov–Krasovskii stable T2FNN controller for a class of nonlinear time-delay systems. Soft Comput 23(4):1407–1419. https://doi.org/10.1007/s00500-018-3053-9

    Article  MATH  Google Scholar 

  17. Gurbină M, Lascu M, Lascu D (2019) Tumor detection and classification of MRI brain image using different wavelet transforms and support vector machines. pp 505–508

  18. Halder A, Talukdar NA (2019) Robust brain magnetic resonance image segmentation using modified rough-fuzzy C-means with spatial constraints. Appl Soft Comput J 85:105758. https://doi.org/10.1016/j.asoc.2019.105758

    Article  Google Scholar 

  19. Han HG, Li JM, Wu XL, Qiao JF (2019) Cooperative strategy for constructing interval type-2 fuzzy neural network. Neurocomputing 365:249–260. https://doi.org/10.1016/j.neucom.2019.07.004

    Article  Google Scholar 

  20. Henson JW, Gaviani P, Gonzalez RG (2005) MRI in treatment of adult gliomas. Lancet Oncol 6(3):167–175. https://doi.org/10.1016/S1470-2045(05)01767-5

    Article  Google Scholar 

  21. Inbarani H (2016) Hybrid Tolerance Rough Set-Firefly based supervised feature selection for MRI brain tumor image classification. Appl Soft Comput J 46:639–651. https://doi.org/10.1016/j.asoc.2016.03.014

    Article  Google Scholar 

  22. Ismael MR, Abdel-Qader I (2018) Brain tumor classification via statistical features and back-propagation neural network. In: IEEE Int. Conf. Electro Inf. Technol. vol. 2018-May, pp 252–257. https://doi.org/10.1109/EIT.2018.8500308.

  23. Jellinger K (1986) Therapy of Malignant Brain Tumors. Springer Vienna, Vienna

    Book  Google Scholar 

  24. Kahali S, Adhikari SK, Sing JK (2017) A two-stage fuzzy multi-objective framework for segmentation of 3D MRI brain image data. Appl Soft Comput J 60:312–327. https://doi.org/10.1016/j.asoc.2017.07.001

    Article  Google Scholar 

  25. Kar S, Majumder DD (2017) A mathematical theory of shape and neuro - fuzzy methodology - based diagnostic analysis : a comparative study on early detection and treatment planning of brain cancer. Int J Clin Oncol. https://doi.org/10.1007/s10147-017-1110-5

    Article  Google Scholar 

  26. Karthik R, Gupta U, Jha A, Rajalakshmi R, Menaka R (2019) A deep supervised approach for ischemic lesion segmentation from multimodal MRI using Fully Convolutional Network. Appl Soft Comput J 84:105685. https://doi.org/10.1016/j.asoc.2019.105685

    Article  Google Scholar 

  27. Kaye AH, Laws ER (2012) “Historical perspective”, in Brain tumors. Elsevier, Amsterdam, pp 1–5

    Google Scholar 

  28. Kebria PM, Khosravi A, Jalali SMJ, Nahavandi S (2019) Type-2 fuzzy neural network synchronization of teleoperation systems with delay and uncertainties. IEEE Int Conf Autom Sci Eng. https://doi.org/10.1109/COASE.2019.8843018

    Article  Google Scholar 

  29. Keerthana T, Xavier S (2018) An intelligent system for early assessment and classification of brain tumor. In: Proc. Int. Conf. Inven. Commun. Comput. Technol. ICICCT 2018, no. Icicct, pp 1265–1268 https://doi.org/10.1109/ICICCT.2018.8473297

  30. Le T, Huynh T, Lin LLC, Chao F, Lin L (2019) A K-means interval type-2 fuzzy neural network for medical diagnosis. Int J Fuzzy Syst. https://doi.org/10.1007/s40815-019-00730-x

    Article  Google Scholar 

  31. Le TL, Huynh TT, Lin CM, ChaoCF (2019) Breast cancer diagnosis using K-means type-2 fuzzy neural network. In: Proc 2018 IEEE Int. Conf. Syst. Man, Cybern. SMC 2018, pp 4150–4154. https://doi.org/10.1109/SMC.2018.00703

  32. Liao X, Yin J, Guo S, Li X, Sangaiah AK (2017) Medical JPEG image steganography based on preserving inter-block dependencies. Comput Electr Eng. https://doi.org/10.1016/j.compeleceng.2017.08.020

    Article  Google Scholar 

  33. Mahmud MR, Mamun MA, Hossain MA, Uddin MP (2018) Comparative analysis of K-means and bisecting k-means algorithms for brain tumor detection. In: Int. Conf. Comput. Commun. Chem. Mater. Electron. Eng. IC4ME2 2018, pp 1–4. https://doi.org/10.1109/IC4ME2.2018.8465607.

  34. metode penelitian Nursalam (2016) Brain tumors practical guide to diagnosis and treatment. J Chem Inf Model 53(9):1689–1699. https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  35. Nurhopipah A, Kusuma BA (2018) Multilevel clustering comparison using self-organizing map and K-means for MIR score clustering. In: Proc. - 2018 3rd Int. Conf. Inf. Technol. Inf. Syst. Electr. Eng. ICITISEE 2018, pp 235–240. https://doi.org/10.1109/ICITISEE.2018.8720977

  36. Pham TX, Siarry P, Oulhadj H (2018) Integrating fuzzy entropy clustering with an improved PSO for MRI brain image segmentation. Appl Soft Comput J 65:230–242. https://doi.org/10.1016/j.asoc.2018.01.003

    Article  Google Scholar 

  37. Qin B, Gu Z (2007) Robust adaptive non-rigid image registration based on joint salient point sets in the presence of tumor-like gross outliers. Electron Imaging Multimed Technol V 6833(60402021):683320. https://doi.org/10.1117/12.755417

    Article  Google Scholar 

  38. Russell J, Norvig P (2013) Artificial intelligence a modern approach

  39. Saeed S, Bin Abdullah A (2019) Investigation of a brain cancer with interfacing of 3-dimensional image processing. In: 2019 Int. Conf. Inf. Sci. Commun. Technol. ICISCT 2019, pp 1–6. https://doi.org/10.1109/CISCT.2019.8777404.

  40. Santos RS, Malheiros SMF, Cavalheiro S, de Oliveira JMP (2013) A data mining system for providing analytical information on brain tumors to public health decision makers. Comput Methods Progr Biomed 109(3):269–282. https://doi.org/10.1016/j.cmpb.2012.10.010

    Article  Google Scholar 

  41. Selvaganesan K et al (2019) Adaptive type-2 fuzzy neural-network control for teleoperation systems with delay and uncertainties. Fuzzy Sets Syst. https://doi.org/10.1007/s10278-012-9568-1

    Article  Google Scholar 

  42. Shree NV (2018) Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network. Brain Inform. https://doi.org/10.1007/s40708-017-0075-5

    Article  Google Scholar 

  43. Siddiqui MF, Mujtaba G, Reza AW, Shuib L (2017) Multi-class disease classification in brain MRIs using a computer-aided diagnostic system. Symmetry (Basel) 9(3):1–14. https://doi.org/10.3390/sym9030037

    Article  MathSciNet  Google Scholar 

  44. Singh C, Bala A (2019) A transform-based fast fuzzy C-means approach for high brain MRI segmentation accuracy. Appl Soft Comput J 76:156–173. https://doi.org/10.1016/j.asoc.2018.12.005

    Article  Google Scholar 

  45. Siri FH, Salehiniya H (2019) Pancreatic cancer in Iran: an epidemiological review. J Gastrointest Cancer. https://doi.org/10.1007/s12029-019-00279-w

    Article  Google Scholar 

  46. Sood D et al (2019) 3D extracellular matrix microenvironment in bioengineered tissue models of primary pediatric and adult brain tumors. Nat Commun 10(1):1–14. https://doi.org/10.1038/s41467-019-12420-1

    Article  MathSciNet  Google Scholar 

  47. Sun D, Liao Q, Stoyanov T, Kiselev A, Loutfi A (2019) Bilateral telerobotic system using Type-2 fuzzy neural network based moving horizon estimation force observer for enhancement of environmental force compliance and human perception. Automatica 106:358–373. https://doi.org/10.1016/j.automatica.2019.04.033

    Article  MathSciNet  MATH  Google Scholar 

  48. Taghavifar H, Rakheja S (2019) Path-tracking of autonomous vehicles using a novel adaptive robust exponential-like-sliding-mode fuzzy type-2 neural network controller. Mech Syst Signal Process 130:41–55. https://doi.org/10.1016/j.ymssp.2019.04.060

    Article  Google Scholar 

  49. Toxicity Uncertainty (2018) Chapter 15: toxicity uncertainty, vol. 1711

  50. Tao Y, Li Y, Lin X (2018) A deep clustering algorithm based on self-organizing map neural network, vol 2. Springer, New York

    Google Scholar 

  51. van der Burgh HK, Schmidt R, Westeneng HJ, de Reus MA, van den Berg LH, van den Heuvel MP (2017) Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis. NeuroImage Clin 13:361–369. https://doi.org/10.1016/j.nicl.2016.10.008

    Article  Google Scholar 

  52. Varlamis I, Apostolakis I, Sifaki-Pistolla D, Dey N, Georgoulias V, Lionis C (2017) Application of data mining techniques and data analysis methods to measure cancer morbidity and mortality data in a regional cancer registry: The case of the island of Crete, Greece. Comput Methods Progr Biomed 145:73–83. https://doi.org/10.1016/j.cmpb.2017.04.011

    Article  Google Scholar 

  53. Wu Y, Yang W, Jiang J, Li S (2013) Semi-automatic segmentation of brain tumors using population and individual information. pp 786–796. https://doi.org/10.1007/s10278-012-9568-1

  54. Zarinbal M, FazelZarandi MH, Turksen IB, Izadi M (2015) A type-2 fuzzy image processing expert system for diagnosing brain tumors. J Med Syst 39:1–20. https://doi.org/10.1007/s10916-015-0311-6

    Article  Google Scholar 

  55. Zhu X, Wang N (2019) Cuckoo search algorithm with onlooker bee search for modeling PEMFCs using T2FNN. Eng Appl Artif Intell 85(August):740–753. https://doi.org/10.1016/j.engappai.2019.07.019

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Rezaie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The proposed model, defined in Sect. 2, is used to design software called MRI Tumor Detection and Classification. This system includes six major parts. By clicking “Load MR images”, the desired image will be selected. The preprocessing key prepares the image and segmentation key determines the tumor location. Next, by clicking “extract feature”, 12 feature will be shown. Fz2 Classification and Analysis keys determined the tumor type, accuracy, and execution time (Fig. 

Fig. 11
figure 11

MRI Tumor Detection and Classification software

11). The Brain Tumor Detection Toolbox and some MRI resources can be found in Google Drive.

Appendix 2

Table 4 Possible outcomes as in the confusion matrix with 5%,7%, and 9% of salt and pepper noise with 20% inhomogeneity
Table 5 Possible outcomes as in the confusion matrix with 5%,7%, and 9% of salt and pepper noise with 40% inhomogeneity
Table 6 Performance of the classifier with 5%,7%, and 9% of salt and pepper noise with 20% inhomogeneity
Table 7 Performance of the classifier with 5%, 7%, and 9% of salt and pepper noise with 40% inhomogeneity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaie, V., Parnianifard, A. A new intelligent system for diagnosing tumors with MR images using type-2 fuzzy neural network (T2FNN). Multimed Tools Appl 81, 2333–2363 (2022). https://doi.org/10.1007/s11042-021-11221-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11221-3

Keywords

Navigation