[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A maximum relevancy and minimum redundancy feature selection approach for median filtering forensics

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The forensics of the median filtering is a challenging task due to its content preserving nature. Several methods have been proposed for median filtering forensics in digital images. However the performance of these methods deteriorates for compressed images, small resolutions of images and for anti-forensic operations. Moreover large feature set dimensions of these methods also pose a computational challenge. This paper proposes, a 8-dimensional feature set, derived from two state-of-the-art techniques by employing maximum relevancy and minimum redundancy (mRMR) feature selection approach. Features are selected by mRMR on the basis of distance correlation as an association measure. Extensive experiments are performed to evaluate the efficacy of proposed method through six different databases. The proposed method outperforms state-of-the-art techniques for uncompressed images, compressed images at low quality factors, low resolutions images and for an anti-forensic operation. The performance of the proposed method is also compared with convolutional neural network (CNN) based features for the detection of median filtering at low resolutions and for compressed images. Also, experimental results support the performance of proposed method over other manipulations (average and Gaussian filtering).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aljawarneh S, Yassein MB, Talafha WA (2017) A resource-efficient encryption algorithm for multimedia big data. Multimedi Tools Appl 76(21):22703–22724. https://doi.org/10.1007/s11042-016-4333-y

    Article  Google Scholar 

  2. Aljawarneh S, Yassein MB, Talafha WA (2018) A multithreaded programming approach for multimedia big data: encryption system. Multimed Tools Appl 77 (9):10997–11016. https://doi.org/10.1007/s11042-017-4873-9

    Article  Google Scholar 

  3. Aljawarneh SA, Moftah RA, Maatuk AM (2016) Investigations of automatic methods for detecting the polymorphic worms signatures. Future Gener Comput Syst 60(C):67–77. https://doi.org/10.1016/j.future.2016.01.020

    Article  Google Scholar 

  4. Bas P, Furon T (2007) Break our watermarking system. http://bows2.ec-lille.fr/2nd

  5. Bas P, Filler T, Pevný T (2011) Break our steganographic system: the ins and outs of organizing boss. In: Filler T, Pevný T, Craver S, Ker A (eds) Information hiding. Springer, Berlin, pp 59–70

  6. Berrendero JR, Cuevas A, Torrecilla JL (2015) The mRMR variable selection method: a comparative study for functional data. arXiv:1507.03496

  7. Bovik A (1987) Streaking in median filtered images. IEEE Transactions on Acoustics, Speech and Signal Processing 35:493–503. https://doi.org/10.1109/TASSP.1987.1165153

    Article  MATH  Google Scholar 

  8. Chang CC, Lin CJ (2011) Libsvm: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):27:1–27:27. https://doi.org/10.1145/1961189.1961199

    Article  Google Scholar 

  9. Chen C, Ni J, Huang R, Huang J, Ghosal D (2013) Blind median filtering detection using statistics in difference domain. In: Information hiding (ed) Kirchner, M. Springer, Berlin, pp 1–15

  10. Chen J, Kang X, Liu Y, Wang ZJ (2015) Median filtering forensics based on convolutional neural networks. IEEE Signal Processing Letters 22(11):1849–1853. https://doi.org/10.1109/LSP.2015.2438008

    Article  Google Scholar 

  11. Dang-Nguyen DT, Pasquini C, Conotter V, Boato G (2015) Raise: a raw images dataset for digital image forensics. In: Proceedings of the 6th ACM multimedia systems conference. MMSys ’15, pp 219–224, https://doi.org/10.1145/2713168.2713194. ACM, New York

  12. Ding C, Peng H (2003) Minimum redundancy feature selection from microarray gene expression data. In: Computational systems bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003, pp 523–528, https://doi.org/10.1109/CSB.2003.1227396

  13. Fan W, Wang K, Cayre F, Xiong Z (2015) Median filtered image quality enhancement and anti-forensics via variational deconvolution. IEEE Transactions on Information Forensics and Security 10(5):1076–1091. https://doi.org/10.1109/TIFS.2015.2398362

    Article  Google Scholar 

  14. Gloe T, Böhme R (2010) The dresden image database for benchmarking digital image forensics. Journal of Digital Forensic Practice 3(2-4):150–159. https://doi.org/10.1080/15567281.2010.531500

    Article  Google Scholar 

  15. Gupta A, Singhal D (2018) Analytical global median filtering forensics based on moment histograms. ACM Trans Multimedia Comput Commun Appl 14(2):44:1–44:23. https://doi.org/10.1145/3176650

    Article  Google Scholar 

  16. Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238. https://doi.org/10.1109/TPAMI.2005.159

    Article  Google Scholar 

  17. Justusson BI (1981) Median filtering: statistical properties. Springer, Berlin, pp 161–196. https://doi.org/10.1007/BFb0057597

    Google Scholar 

  18. Kang X, Stamm MC, Peng A, Liu KJR (2013) Robust median filtering forensics using an autoregressive model. IEEE Transactions on Information Forensics and Security 8(9):1456–1468. https://doi.org/10.1109/TIFS.2013.2273394

    Article  Google Scholar 

  19. Kirchner M, Bohme R (2008) Hiding traces of resampling in digital images. IEEE Transactions on Information Forensics and Security 3(4):582–592. https://doi.org/10.1109/TIFS.2008.2008214

    Article  Google Scholar 

  20. Kirchner M, Fridrich J (2010) On detection of median filtering in digital images. In: Media Forensics and Security II, SPIE, vol 7541, pp 371 – 382, https://doi.org/10.1117/12.839100

  21. NRCS (2019) Natural resources conservation service photo gallery. United States Department of Agriculture https://photogallery.sc.egov.usda.gov/res/sites/photogallery/

  22. Peng A, Luo S, Zeng H, Wu Y (2019) Median filtering forensics using multiple models in residual domain. IEEE Access 7:28525–28538. https://doi.org/10.1109/ACCESS.2019.2897761

    Article  Google Scholar 

  23. Rhee KH (2015) Median filtering detection using variation of neighboring line pairs for image forensic. In: 2015 IEEE 5th international conference on consumer electronics - Berlin (ICCE-Berlin), pp 103–107, https://doi.org/10.1109/ICCE-Berlin.2015.7391206

  24. Schaefer G, Stich M (2003) UCID: an uncompressed color image database. In: Yeung MM, Lienhart RW, Li CS (eds) Storage and retrieval methods and applications for multimedia 2004, International Society for Optics and Photonics, SPIE, vol 5307, pp 472 – 480, https://doi.org/10.1117/12.525375

  25. Stamm MC, Liu KJR (2010) Forensic detection of image manipulation using statistical intrinsic fingerprints. IEEE Transactions on Information Forensics and Security 5(3):492–506. https://doi.org/10.1109/TIFS.2010.2053202

    Article  Google Scholar 

  26. Stamm MC, Liu KJR (2011) Anti-forensics of digital image compression. IEEE Transactions on Information Forensics and Security 6(3):1050–1065. https://doi.org/10.1109/TIFS.2011.2119314

    Article  Google Scholar 

  27. Székely GJ, Rizzo ML, Bakirov NK (2007) Measuring and testing dependence by correlation of distances. Ann Statist 35 (6):2769–2794. https://doi.org/10.1214/009053607000000505

    Article  MathSciNet  MATH  Google Scholar 

  28. Vergara JR, Estévez PA (2014) A review of feature selection methods based on mutual information. Neural Computing and Applications 24(1):175–186. https://doi.org/10.1007/s00521-013-1368-0

    Article  Google Scholar 

  29. Yang J, Ren H, Zhu G, Huang J, Shi YQ (2018) Detecting median filtering via two-dimensional ar models of multiple filtered residuals. Multimedia Tools Appl 77(7):7931–7953. https://doi.org/10.1007/s11042-017-4691-0

    Article  Google Scholar 

  30. Yuan H (2011) Blind forensics of median filtering in digital images. IEEE Transactions on Information Forensics and Security 6(4):1335–1345. https://doi.org/10.1109/TIFS.2011.2161761

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhinav Gupta.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, A., Gupta, A. A maximum relevancy and minimum redundancy feature selection approach for median filtering forensics. Multimed Tools Appl 79, 21743–21770 (2020). https://doi.org/10.1007/s11042-020-08994-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-08994-4

Keywords

Navigation