[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Prior distribution-based statistical active contour model

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Employing prior information can greatly improve the segmentation result of many image segmentation problems. For example, a commonly used prior information is the shape of the object. In this paper, we introduce a different kind of prior information called the prior distribution. On the basis of non-parametric statistical active contour model, we add prior distribution energy to build a novel prior active contour model. During the convergence of contour curve, distribution difference between the inside and outside of the active contour is maximized while the distribution difference between the inside/outside of contour and the prior object/background is minimized. Furthermore, in order to improve the computation speed, a method to accelerate the computation speed is also proposed, which significantly relieves the burden of estimating probability density functions. As the experimental results suggest, satisfactory effects can be achieved in the segmentation of synthetic images and natural images via the our algorithm. Compared with the traditional non-parametric statistical active contour model without prior information, our method achieves a distinct improvement in both accuracy and computation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Alpert S, Galun M, Brandt A, Basri R (2011) Image segmentation by probabilistic bottom-up aggregation and cue integration. IEEE Trans Pattern Anal Mach Intell 34(2):315–327

    Article  Google Scholar 

  2. Bresson X, Vandergheynst P, Thiran J-P (2006) A variational model for object segmentation using boundary information and shape prior driven by the Mumford-Shah functional. Int J Comput Vis 68(2):145–162

    Article  Google Scholar 

  3. Bresson X, Esedoḡlu S, Vandergheynst P, Thiran J-P, Osher S (2007) Fast global minimization of the active contour/snake model. J Math Imag Vis 28(2):151–167

    Article  MathSciNet  Google Scholar 

  4. Brown ES, Chan TF, Bresson X (2012) Completely convex formulation of the chan-vese image segmentation model. Int J Comput Vis 98(1):103–121

    Article  MathSciNet  MATH  Google Scholar 

  5. Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22(1):61–79

    Article  MATH  Google Scholar 

  6. Chan T, Zhu W (2005) Level set based shape prior segmentation. In: Computer vision and pattern recognition, vol 2. IEEE, pp 1164–1170

  7. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  MATH  Google Scholar 

  8. Chen Z, Fu Y, Xiang Y, Rong R (2017) A novel iterative shrinkage algorithm for CS-MRI via adaptive regularization. IEEE Signal Process Lett 24(10):1443–1447

    Article  Google Scholar 

  9. Chen Z, Fu Y, Xiang Y, Rong R (2018) A novel low-rank model for MRI using the redundant wavelet tight frame. Neurocomputing 289:180–187

    Article  Google Scholar 

  10. Cheng Z, Shen J, Miao H (2016) The effects of multiple query evidences on social image retrieval. Multimed Syst 22(4):509–523

    Article  Google Scholar 

  11. Cohen LD (1991) On active contour models and balloons. CVGIP: Image Underst 53(2):211–218

    Article  MathSciNet  MATH  Google Scholar 

  12. Cremers D, Kohlberger T, Schnörr C (2003) Shape statistics in kernel space for variational image segmentation. Pattern Recogn 36(9):1929–1943

    Article  MATH  Google Scholar 

  13. Foulonneau A, Charbonnier P, Heitz F (2006) Affine-invariant geometric shape priors for region-based active contours. IEEE Trans Pattern Anal Mach Intell 28 (8):1352–1357

    Article  Google Scholar 

  14. Gong M, Li H, Zhang X, Zhao Qn, Wang B (2016) Nonparametric statistical active contour based on inclusion degree of fuzzy sets. IEEE Trans Fuzzy Syst 24(5):1176–1192

    Article  Google Scholar 

  15. Hsieh C-W, Chen C-Y (2018) An adaptive level set method for improving image segmentation. Multimed Tools Appl 77(15):20087–20102

    Article  Google Scholar 

  16. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331

    Article  MATH  Google Scholar 

  17. Kim J, Fisher JW, Yezzi A, Çetin M, Willsky AS (2005) A nonparametric statistical method for image segmentation using information theory and curve evolution. IEEE Trans Image Process 14(10):1486–1502

    Article  MathSciNet  Google Scholar 

  18. Lankton S, Tannenbaum A (2008) Localizing region-based active contours. IEEE Trans Image Process 17(11):2029–2039

    Article  MathSciNet  MATH  Google Scholar 

  19. Leventon ME, Faugeras O, Grimson ELW, Wells WM (2000) Level set based segmentation with intensity and curvature priors. In: Mathematical methods in biomedical image analysis. IEEE, pp 4–11

  20. Leventon ME, Grimson ELW, Faugeras O (2000) Statistical shape influence in geodesic active contours. In: Computer vision and pattern recognition, vol 1. IEEE, pp 316–323

  21. Li B, Acton ST (2007) Active contour external force using vector field convolution for image segmentation. IEEE Trans Image Process 16(8):2096–2106

    Article  MathSciNet  Google Scholar 

  22. Li C, Xu C, Gui C, Fox MD (2005) Level set evolution without re-initialization: a new variational formulation. In: Computer vision and pattern recognition, vol 1. IEEE, pp 430–436

  23. Li C, Kao C-Y, Gore JC, Ding Z (2007) Implicit active contours driven by local binary fitting energy. In: Computer vision and pattern recognition. IEEE, pp 1–7

  24. Michailovich O, Rathi Y, Tannenbaum A (2007) Image segmentation using active contours driven by the Bhattacharyya gradient flow. IEEE Trans Image Process 16(11):2787–2801

    Article  MathSciNet  Google Scholar 

  25. Mitiche A, Ayed IB (2010) Variational and level set methods in image segmentation, vol 5. Springer Science & Business Media

  26. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  MATH  Google Scholar 

  27. Paragios N, Deriche R (2002) Geodesic active regions: a new framework to deal with frame partition problems in computer vision. J Vis Commun Image Represent 13 (1–2):249–268

    Article  Google Scholar 

  28. Peng Y, Lu B-L (2017) Discriminative extreme learning machine with supervised sparsity preserving for image classification. Neurocomputing 261:242–252

    Article  Google Scholar 

  29. Ronfard R (1994) Region-based strategies for active contour models. Int J Comput Vis 13(2):229–251

    Article  Google Scholar 

  30. Schoenemann T, Kahl F, Masnou S, Cremers D (2012) A linear framework for region-based image segmentation and inpainting involving curvature penalization. Int J Comput Vis 99(1):53–68

    Article  MathSciNet  MATH  Google Scholar 

  31. Shao D, Zhang Y, Wei W (2009) An aircraft recognition method based on principal component analysis and image model matching. Chinese J Stereol Image Anal 3:7

    Google Scholar 

  32. Unal G, Yezzi A, Krim H (2005) Information-theoretic active polygons for unsupervised texture segmentation. Int J Comput Vis 62(3):199–220

    Article  Google Scholar 

  33. Vese LA, Chan TF (2002) A multiphase level set framework for image segmentation using the mumford and shah model. Int J Comput Vis 50(3):271–293

    Article  MATH  Google Scholar 

  34. Wu H, Appia V, Yezzi A (2013) Numerical conditioning problems and solutions for nonparametric iid statistical active contours. IEEE Trans Pattern Anal Mach Intell 35(6):1298–1311

    Article  Google Scholar 

  35. Xu C, Prince JL (1998) Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359–369

    Article  MathSciNet  MATH  Google Scholar 

  36. Yu H, He F, Pan Y (2019) A novel segmentation model for medical images with intensity inhomogeneity based on adaptive perturbation. Multimed Tools Appl 78 (9):11779–11798

    Article  Google Scholar 

  37. Zhu SC, Yuille A (1996) Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans Pattern Anal Mach Intell 18(9):884–900

    Article  Google Scholar 

  38. Zhuo T, Cheng Z, Zhang P, Wong Y, Kankanhalli M (2018) Unsupervised online video object segmentation with motion property understanding. arXiv:1810.03783

Download references

Acknowledgments

The work is supported by National Key R&D Program of China (2018YFC0309400), National Natural Science Foundation of China (61871188), Guangzhou city science and technology research projects(201902020008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiheng Zhou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Derivation of the gradient flow formula

Appendix: Derivation of the gradient flow formula

In this section, we accomplished the derivation of gradient flow of the prior distribution-based statistical active contour model energy function. The proposed energy function in (23) shown as

$$ \begin{array}{lll}E(\phi(x))&=E_{\text{SACM}}(\phi(x))+\lambda_{1}E_{\text{prior}+}(p_{+},p_{\text{prior}+},\phi(x))\\ &+\lambda_{2}E_{\text{prior}-}(p_{-},p_{\text{prior}-},\phi(x)). \end{array} $$
(34)

To minimize the energy function, it is required to calculate the first derivative with respect to ϕ(x), i.e.,

$$ \begin{array}{lll}\frac{\partial E(\phi(x))}{\partial \phi(x)}=&\frac{\partial E_{\text{SACM}}(\phi(x))}{\partial \phi(x)}\\ &-\frac{\lambda_{1}}{2}{\int}_{R}\frac{\partial p_{-}(z,\phi(x))}{\partial \phi(x)}\sqrt{\frac{p_{\text{prior}-}(z)}{p_{-}(z,\phi(x))}}\mathrm{d}z\\ &-\frac{\lambda_{2}}{2}{\int}_{R}\frac{\partial p_{+}(z,\phi(x))}{\partial \phi(x)}\sqrt{\frac{p_{\text{prior}+}(z)}{p_{+}(z,\phi(x))}}\mathrm{d}z \end{array} $$
(35)

It can be proved that [24],

$$ \frac{\partial p_{-}(z,\phi(x))}{\partial \phi(x)}=\frac{\delta(\phi(x))}{|R_{-}|}(p_{-}(z,\phi(x))-K_{\sigma}(z-I(x))) $$
(36)
$$ \frac{\partial p_{+}(z,\phi(x))}{\partial \phi(x)}=\frac{\delta(\phi(x))}{|R_{+}|}(K_{\sigma}(z-I(x))-p_{+}(z,\phi(x))) $$
(37)

where |R|and |R+| respectively represent the area of the inside and outside regions that can be determined according to \({\int \limits }_{\varOmega } H(-\phi (x))\mathrm {d}x\) and \({\int \limits }_{\varOmega } H(\phi (x))\mathrm {d}x\).

Based on the equations above, the following equation is given:

$$ \frac{\partial E(\phi(x))}{\partial \phi(x)}=\frac{\partial E_{\text{SACM}}(\phi(x))}{\partial \phi(x)}+\delta(\phi(x))V(x) $$
(38)

where

$$ \begin{array}{lll}V(x)&=\frac{1}{2}\left( \frac{\lambda_{2}}{|R_{+}|}{\int}_{R}\sqrt{p_{+}(z)p_{\text{prior}+}(z)}\mathrm{d}z-\frac{\lambda_{1}}{|R_{-}|}{\int}_{R}\sqrt{p_{-}(z)p_{\text{prior}-}(z)}\mathrm{d}z\right)\\ &+\frac{1}{2}{\int}_{R}K_{\sigma}(z-I(x))(\frac{\lambda_{1}}{|R_{-}|}\sqrt{\frac{p_{\text{prior}-}(z)}{p_{-}(z,\phi(x))}}-\frac{\lambda_{2}}{|R_{+}|}\sqrt{\frac{p_{\text{prior}+}(z)}{p_{+}(z,\phi(x))}})\mathrm{d}z. \end{array} $$
(39)

Finally, the time parameter t is brought into the level set function in order to obtain the gradient vector flow of the minimum level set function:

$$ \frac{\partial \phi}{\partial t}=-\frac{\partial E(\phi(x))}{\partial\phi(x)} $$
(40)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Dai, M., Wang, T. et al. Prior distribution-based statistical active contour model. Multimed Tools Appl 78, 35813–35833 (2019). https://doi.org/10.1007/s11042-019-08101-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08101-2

Keywords

Navigation